

Machine learning transcriptome analysis to identify genes associated with feed efficiency in pig

Miriam Piles, Carlos Fernandez-Lozano, María Velasco, Olga González, Juan Pablo Sánchez, Raquel Quintanilla, María Ballester

Molecular mechanisms underlying **feed efficiency** are still unknown

Machine-learning applied into a resampling strategy can provide a good assessment of the generalizability of the results

Objective

To identify genes associated with feed efficiency using transcriptomic (RNA-Seq) data from pigs phenotypically extreme for residual feed intake

$$\boldsymbol{RFI}_{ijk} = \boldsymbol{FI}_{ijk} - \left[S_j + \beta_{\boldsymbol{MBW}_j} \times \boldsymbol{MBW}_i + \beta_{\boldsymbol{ADG}_j} \times \boldsymbol{ADG}_i + \beta_{\boldsymbol{BFG}_j} \times \boldsymbol{BFG}_i\right]$$

 β_{MBW_j} , β_{ADG_j} and β_{BFG_j} partial regressions coefficients (within sex *j*).

FI: feed intake *MBW*: metabolic body weight *ADG*: average daily gain *BFG*: backfat gain

IVO-automatic feeders Body weight and backfat measured at 1, 3, 6, 9, 12 and 15 weeks

25 Kg of body weight

105 Kg of body weight

RFI

Differences at the phenotypic level

LS means

Differences at the phenotypic level

LS means

Differential expression analyses: Machine learning algorithms

Functional categorization of DE genes: IPA

Differential expression analysis

1st step: Gene ranking based on permutation accuracy importance score

Classification using Random Forest algorithm based on conditional inference

Data (**X**, **y**)

X is the 65 x 13990 predictor matrix of RNA-Seq data

y is the class vector: Low or High RFI

2nd step: Classification using Machine learning algorithms

Data (**X**, **y**)

X is the 65 x p predictor matrix of RNA-Seq data

Subsets of *p* predictors *p* = **50**, **75**, **100**, **125**, **150**, **200**, **250**, **300**, **350**, **400**

y is the class vector: Low or High RFI

mlr R package

Nearest Shrunken Centroids (PAMR)

For a test sample $x^* = (x_1^*, x_2^*, \dots, x_p^*)$ $\delta_k(x^*) = \sum_{i=1}^p \frac{(x_i^* - \bar{x}'_{ik})^2}{s_i^2} - 2\log \pi_k$ $C(x^*) = \ell \text{ if } \delta_\ell(x^*) = \min_k \delta_k(x^*)$

Elastic net (CVGLMNET)

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_2 \|\boldsymbol{\beta}\|^2 + \lambda_1 \|\boldsymbol{\beta}\|_1$$

The elastic net penalty

$$\begin{split} J(\beta) &= \alpha \|\beta\|^2 + (1 - \alpha) \|\beta\|_1 \\ (\text{with } \alpha &= \frac{\lambda_2}{\lambda_2 + \lambda_1}) \\ \min_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|^2 \text{ s.t. } J(\beta) &\leq t. \end{split}$$

Random Forest (randomForest)

$$\begin{array}{l} \underset{\beta_{0},\beta_{1},\ldots,\beta_{p},\epsilon_{1},\ldots,\epsilon_{n}}{\text{maximize}} \quad M \quad \text{subject to} \quad \sum_{j=1}^{p} \beta_{j}^{2} = 1, \\ y_{i} \left(\beta_{0} + \sum_{i \in S} \hat{\alpha}_{i} \left\langle x, x_{i} \right\rangle \right) \geq M(1 - \varepsilon_{i}) \\ \\ \sum_{i=1}^{n} \varepsilon_{i} \leq C \qquad \varepsilon_{i} \geq 0 \end{array}$$

Nested Resampling

Classification LIVER AUROC

AUROC = 0.85

Accuracy = 0.78

L.75.pcs L.100.pcs L.125.pcs 0.75 -0.70 -L.150.pcs L.200.pcs L.250.pcs L.300.pcs ¢ 0.85 -0.80 0.75 0.70 -SVM ENET PAM SVM ENET PAM RF В L.350.pcs L.400.pcs 0.85 0.80 0.75 -0.70 -ENET SVM SVM ENET PAM PAM R В Machine Learning Algorithm

Classification Performance

Functional analysis: most significant overrepresented canonical pathways in liver

Canonical Pathways	-log(p-value)	Molecules
Melatonin Degradation II	3,41E00	SMOX,IL4I1
Sirtuin Signaling Pathway	2,01E00	WRN,TUBA1A,GLS,TOMM20,CLOCK,TUBA3E,PFKM
PPARα/RXRα Activation	1,8E00	PRKAR2B,CLOCK,GNA14,CYP2C8,AIP
Tryptophan Degradation X (Mammalian, via Tryptamine)	1,76E00	SMOX,IL4I1
GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells	1,2E00	PRKAR2B,GNA14,CCK
Xenobiotic Metabolism Signaling	6,81E-01	SMOX,IL4I1,CYP2C8,AIP

Functional analysis: most significant overrepresented canonical pathways in duodenum

Canonical Pathways	-log(p-value)	Molecules
NRF2-mediated Oxidative Stress Response	3,04E00	DNAJC6,MAPK8,DNAJC1,PRKD3
Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses	2,45E00	MAPK8,CASP1,PRKD3
Aldosterone Signaling in Epithelial Cells	2,2E00	DNAJC6, DNAJC1, PRKD3
Cholecystokinin/Gastrin-mediated Signaling	1,67E00	MAPK8,PRKD3
IL-8 Signaling	1,14E00	MAPK8,PRKD3
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	1,15E00	MAPK8,PRKD3
Unfolded protein response	9,35E-01	MAPK8
Protein Ubiquitination Pathway	9,25E-01	DNAJC6, DNAJC1

Conclusions — Good performance of ML algorithms and RNA-Seq expression data for classifying pigs into high or low RFI groups.

 Expression difference of genes involved in feed efficiency are clearer in liver than in duodenum tissues.

Among biological pathways identified in liver and duodenum tissues,
those related to response to oxidative stress, aldosterone signaling and
melatonin degradation seemed consistently involved in FE related traits.

FundingThis work was funded by the European Union Seventh Framework Programme
(FP7/2007–2013) as part of the ECO-FCE project under grant agreement No
311794 and the Spanish Ministry of Economy, Industry and Competitiveness
(MINECO) Carlos Fernandez-Lozano received a grant from Juan de la Cierva
Fellowship Program (Ref. FJCI-2015-26071) and M. Ballester received a grant
from Ramón y Cajal Post-doctoral Fellowship Program (RYC-2013-12573).

Random Forest

Nearest Shrunken Centroids (PAMR)

For a test sample $x^* = (x_1^*, x_2^*, \dots, x_p^*)$ $\delta_k(x^*) = \sum_{i=1}^p \frac{(x_i^* - \bar{x}_{ik}')^2}{s_i^2} - 2\log \pi_k$ $C(x^*) = \ell \text{ if } \delta_\ell(x^*) = \min_k \delta_k(x^*)$

Elastic net (CVGLMNET)

$$\hat{\beta} = \arg\min_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda_2 \|\beta\|^2 + \lambda_1 \|\beta\|_1$$

The elastic net penalty

 $J(\beta) = \alpha \|\beta\|^2 + (1-\alpha) \|\beta\|_1$ (with $\alpha = \frac{\lambda_2}{\lambda_2 + \lambda_1}$) $\min_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|^2 \text{ s.t. } J(\beta) \le t.$

Support Vector Machine (SVM)

$$\max_{\substack{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n}} M \text{ subject to } \sum_{j=1}^p \beta_j^2 = 1,$$
$$y_i \left(\beta_0 + \sum_{i \in S} \hat{\alpha}_i \langle x, x_i \rangle \right) \ge M(1 - \varepsilon_i)$$
$$\sum_{i=1}^n \varepsilon_i \le C \qquad \varepsilon_i \ge 0$$

Classification Performance

Classification Performance

