

Integrating blood transcriptome and immunity traits to identify markers of immune capacity in pigs

Maroilley T., Blanc F., Lemonnier G., Lecardonnel J., Bidanel J.P., Rau A., Billon Y., Mercat M.J., Estellé J., <u>Rogel-Gaillard C</u>.

UMR1313 GABI, Génétique Animale et Biologie Intégrative, Jouy-en-Josas http://www6.jouy.inra.fr/gabi

ABOUT IMMUNE CAPACITY

Session 21 on resilience: « Problem-free with no vet costs » « 'She' never (or rarely) gets ill »

Pathogen pressure: viruses, bacteria, parasites

practices, feed diet, social interactions, etc.

Farm system:

Vaccination Sanitary rules

Anti-infectious medication (e.g. antibiotics)

Individual response variability [(genome x epigenome) x microbiome] x environment

Survival with loss of Death

performance

Survival with no loss of performance

AIM OF THE STUDY: TO IDENTIFY MARKERS OF IMMUNE CAPACITY

Genetic and genomic study of immunity traits
Animals with no clinical sign of infection
No focus on a specific pathogen

Immunity Traits in Pigs: Substantial Genetic Variation and Limited Covariation

Laurence Flori^{1,2,3}, Yu Gao^{1,2,3}, Denis Laloë^{1,3}, Gaëtan Lemonnier^{1,2,3}, Jean-Jacques Leplat^{1,2,3}, Angélique Teillaud^{1,2,3}, Anne-Marie Cossalter⁴, Joëlle Laffitte⁴, Philippe Pinton⁴, Christiane de Vaureix⁵, Marcel Bouffaud⁶, Marie-José Mercat⁷, François Lefèvre⁵, Isabelle P. Oswald⁶, Jean-Pierre Bidanel^{1,3}, Claire Rogel-Gaillard^{1,2,3}*

Flori et al., PLOS One, 2011

The peripheral blood transcriptome reflects variations in immunity traits in swine: towards the identification of biomarkers

Núria Mach^{1,2*†}, Yu Gao^{3†}, Gaëtan Lemonnier^{1,2}, Jérôme Lecardonnel^{1,2}, Isabelle P Oswald^{4,5}, Jordi Estellé^{1,2} and Claire Rogel-Gaillard^{1,2*}

Mach et al., BMC Genomics, 2013

SUS_FLORA PROJECT: A MULTIDISCIPLINARY PARTNERSHIP

INRA, Génétique Animale et Biologie Intégrative, Jouy-en-Josas

<u>T. Maroilley</u>, <u>J. Estellé</u>, <u>F. Blanc</u>, G. Lemonnier, J. Lecardonnel, M. Moroldo, C. Denis, G. Piton, J-J. Leplat, S. Vincent-Naulleau, J-P. Bidanel

INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas

N. Bertho, I. Schwartz-Cornil

INRA, ISP, Tours M. Berri

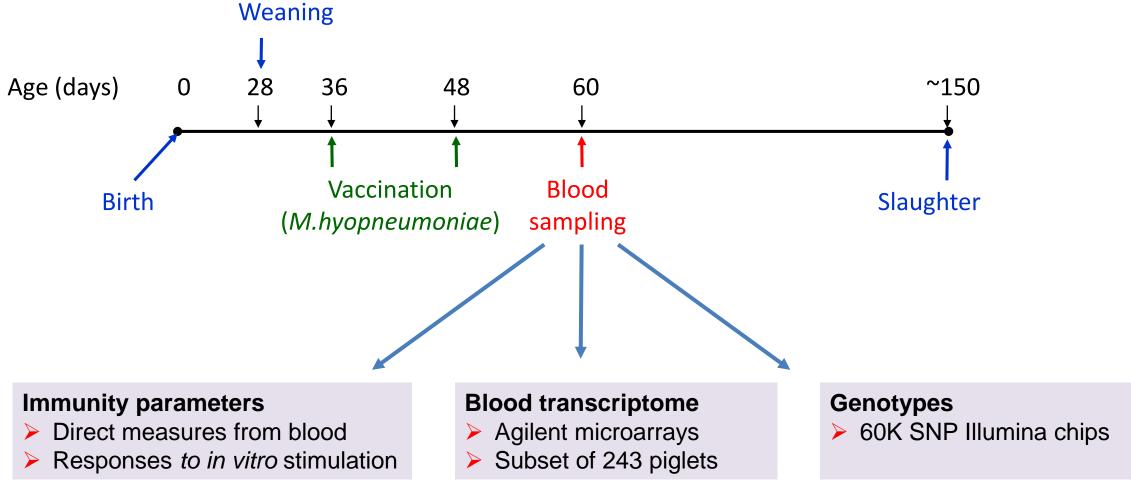
INRA, TOXALIM, Toulouse I. Oswald, P. Gourbeyre, P. Pinton

Bioporc, La Motte au Vicomte M-J. Mercat

INRA, GENESI

Y. Billon

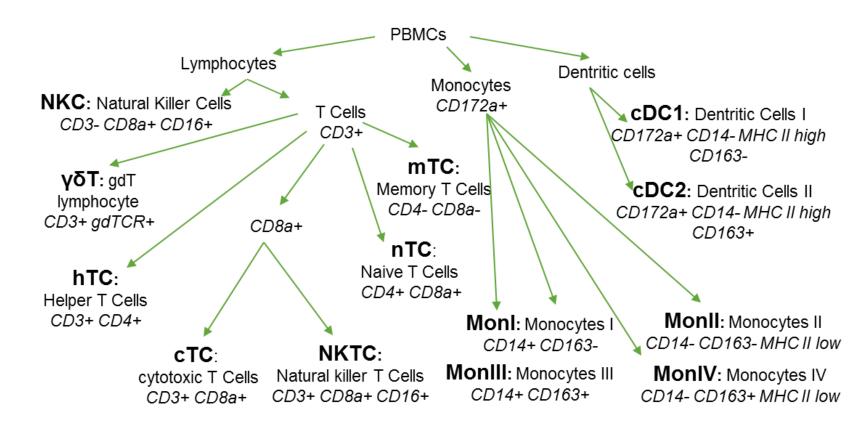
INRA MICALIS, Jouy P. Lepage, F. Levenez, J. Doré



ANIMALS, SAMPLING AND DATA

- Large White breed
- 90 families
- 550 60-day-old piglets

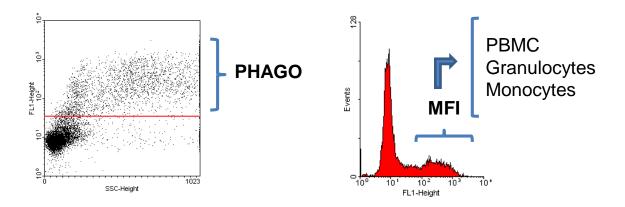
MMUNITY PARAMETERS: DIRECT MEASURES FROM BLOOD


Seric molecules

- > **IgGmh**: anti-*M-hyo IgG*
- IgA: Immunoglobulin A
- > **HAPTO**: Haptoglobin
- **CRP:** C Reactive Protein

Hemogram

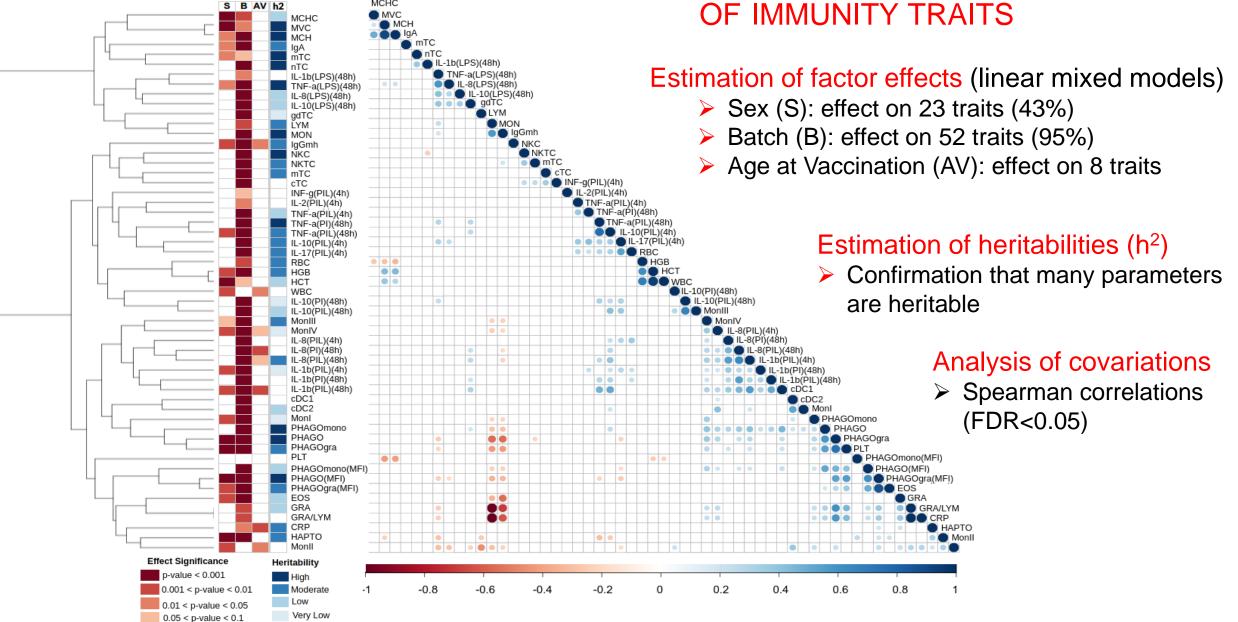
- WBC: White blood cells
- > **LYM**: Lymphocytes
- > MON: Monocytes
- GRA: Granulocytes
- **EOS**: Eosinophils
- RBC: Red blood cells
- PTL: Platelets
- > Hct: Hematocrit
- > **Hgb**: Hemoglobin
- > MCV: mean cell volume
- > MCH: mean cell hemoglobin
- > MCHC: mean cell hemoglobin conc.


Cell sub-populations by flow cytometry

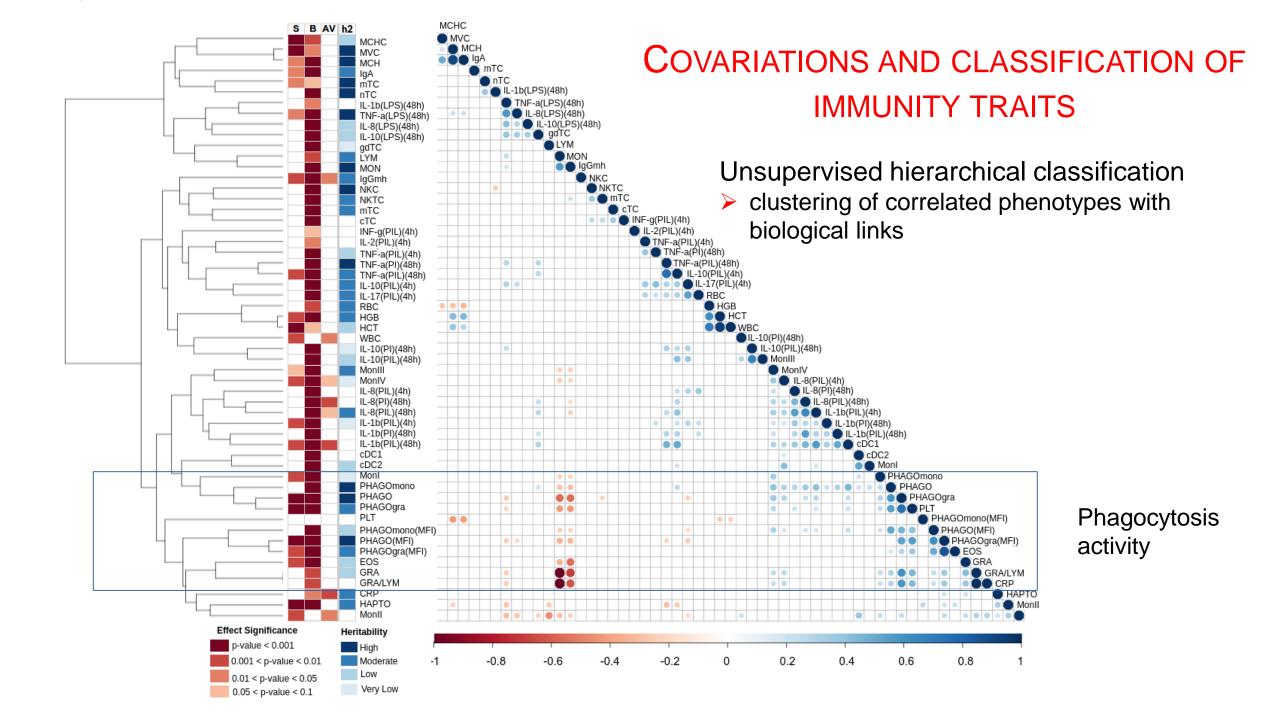
IMMUNITY PARAMETERS: RESPONSES TO IN VITRO STIMULATION

Phagocytosis capacity

Cell system / IT	Number of phagocyting cells	Number of phagocyted bacteria per cell
PBMC	PHAGO	PHAGO(MFI)
Granulocytes	PHAGOgra	PHAGOgra(MFI)
Monocytes	PHAGOmono	PHAGOmono(MFI)


MFI = Mean Fluorescence Intensity

Production of cytokines


Cell system	Total blood			
Stimulation	PIL		PI	LPS
Time	4h 48h			
IL-2				
IL-1β				
IL-8				
IL-10				
IL-17				
IFN-γ				
TNF-α				

- P = phorbol myristate acetate (PMA)
- I = ionomycin
- L = lipopolysaccharide (LPS)

GENETIC PARAMETERS AND COVARIATIONS OF IMMUNITY TRAITS

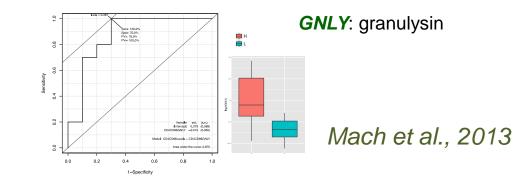
MCHC

COVARIATIONS BETWEEN GENE EXPRESSION IN BLOOD AND IMMUNITY TRAITS

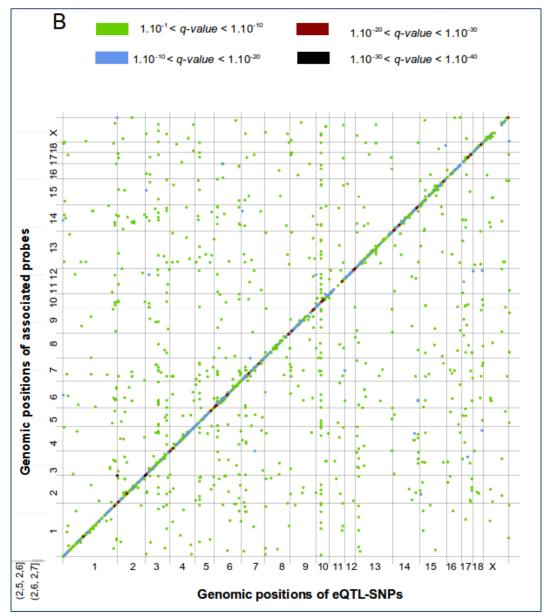
Spearman correlation between gene expression (microarray data) and immunity trait measures (243 piglets); correction for multiple testing (FDR < 0.05)

	Blood	Number of
	Phenotype	correlated genes
Cell sub-populations (FACS)	NKC	200
	NKTC	73
	γδΤϹ	38
	MonIII	2201
(FACO)	MonIV	3
	MonII	2396
	HGB	4
	hTC	3
	cTC	66
	WBC	237
	LYM	948
Hemogram	MON	1283
	GRA	1106
	EOS	3
	HCT	1
	MCH	4

Correlations found for 24 traits


- 16 measured from blood
- 8 measured after blood stimulation (response)

	Response Phenotype	Number of correlated genes
	IL-1β(LPS)(48h)	2
Cytokines	IL-8(PI)(48h)	2
	IL-8(PIL)(48h)	75
Phagocytosis	PHAGO	5002
	PHAGO(MFI)	287
	PHAGOgra	1291
	PHAGOmono	3431
	PHAGOmono(MFI)	817


COVARIATIONS BETWEEN GENE EXPRESSION IN BLOOD AND IMMUNITY TRAITS

> 6,172 genes correlated with at least one immunity trait

- immune system process
 regulation of innate immune system
 cellular response to stress
 regulation of immune system process
 506 genes
- > 989 genes found correlated with only one trait
- > 5 genes found correlated with 13 immunity traits: CCL3L1, CD163, KCNJ12, TRIM2, UBAC2
- Genes already found as putative biomarkers in previous studies
 - For phagocytosis capacity: GATM
 - For cytotoxic CD8+ T cells: GNLY and CXCR1

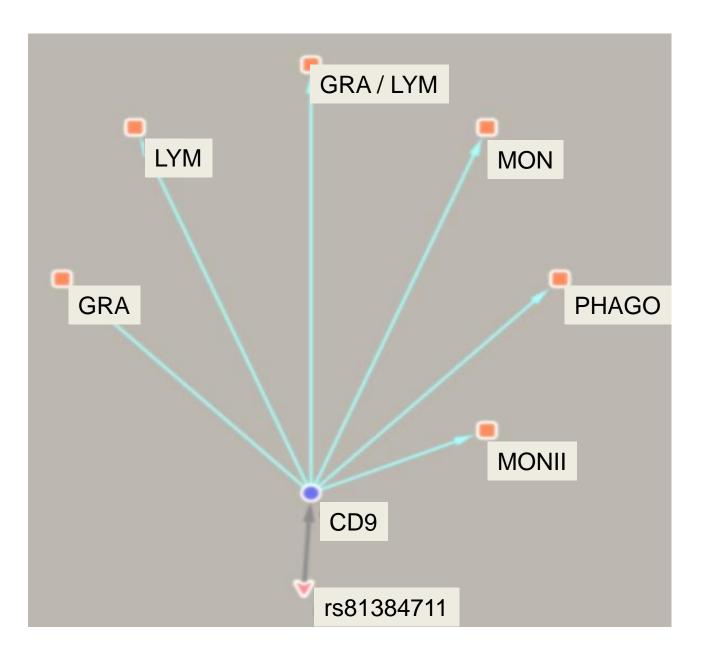
GENETIC CONTROL OF PUTATIVE BLOOD BIOMARKERS

Few candidate biomarkers already shown to be genetically controlled for their transcription in blood by eGWAS.

Maroilley et al. BMC Genomics (2017) 18:967 DOI 10.1186/s12864-017-4354-6

RESEARCH ARTICLE

Open Access


BMC Genomics

CrossMark

Deciphering the genetic regulation of peripheral blood transcriptome in pigs through expression genome-wide association study and allele-specific expression analysis

T. Maroilley^{1*}, G. Lemonnier¹, J. Lecardonnel¹, D. Esquerré², Y. Ramayo-Caldas¹, M. J. Mercat³, C. Rogel-Gaillard^{1*} and J. Estellé^{1*}

Maroilley et al., 2017

SNP RS81384711

- Association between the SNP rs81384711 (M1GA0007843; MAF=0.31) and the transcription level of CD9 in the blood
- The SNP rs81384711 maps to an intron of the gene CD9 (5:64,458,916).
- CD9 encodes a cell surface glycoprotein involved in differentiation, adhesion and signal transduction (three critical mechanisms in cellmediated immunity)
- Correlation between CD9 transcription level and various immune traits related to cell-mediated immunity.

A promising genetic marker of cellmediated immunity traits ?

PERSPECTIVES

- To identify candidate blood biomarkers that predict a combination of immune traits
 - sPLS based on covarying immunity traits (cluster) and genes found correlated with at least one trait (6,172 genes)
- To deepen analysis of putative blood biomarkers with transcription levels found under a genetic control (eQTLs)
 - Access to the underlying biology
 - Help to prioritize predictive markers (genetic markers and biomarkers)
- > To have access to large scale test and validation pig populations
 - Various environments
 - Various genetics

Thank you for your attention

