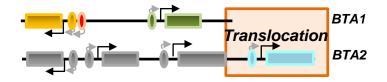


<u>Mekki Boussaha</u>, Rabia Letaief, Alexis Michenet, Cécile Grohs, Sébastien Fritz, Johanna Barbieri, Christophe Klopp, Romain Philippe, Dominique Rocha, Aurélien Capitan, Didier Boichard



Two classes of SVs

I - Balanced SVs: modify DNA structure

II - Unbalanced SVs: modify DNA copy number

Major goal of the project

Scientific context:

Rapid evolution of sequencing technologies

Development of bioinformatics tools

→ Identification of all genomic variations in several species

In livestock species:

Most studies mainly focused on SNPs and InDels

Few studies dealt with SVs

Genome-wide study of SVs in cattle using whole genome sequences (WGSs)

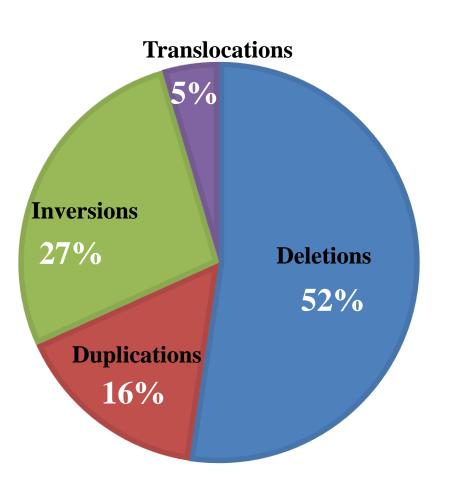
* Samples: WGSs of 339 animals

Туре	Breed	Number
Dairy	Holstein	68
	Montbéliarde	63
	Normande	43
	Abondance	9
	Tarentaise	8
Beef	Limousine	52
	Charolaise	43
	Blonde d'Aquitaine	38
	Salers	8
	Rouge des Prés	7

Sequencing technology:

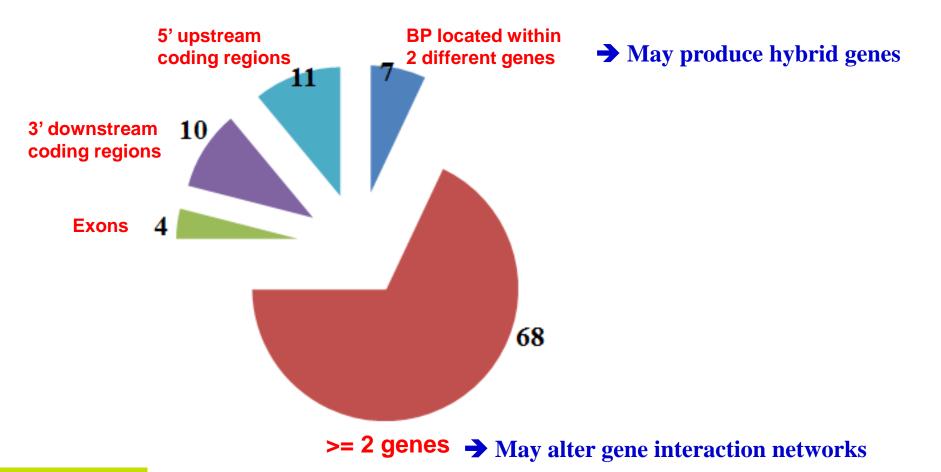
- 100 nt Paired-end sequences
- **Illumina Hiseq2000**

Strategy to study SVs BAM files Step1: SV search **Breakdancer** Pindel Delly 1 - SVs common to the 3 tools 2 - no stretches of $\ll N \gg$ around BP Step2: SV filtering/merging 3 - merge (90% RO threshold) **Filtered SV Regions (SVRs)**


Step3: SV validation/characterization

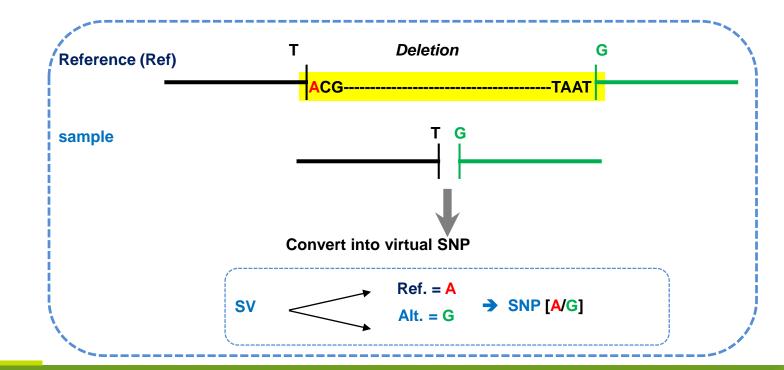
- > Annotation
- Experimental validation
- Link with genetic defects and complex traits

- **Total number of identified SV regions :**
- Similar fractions in other species
- Large number of deletions
 - □ > 63% of deletions < 1Kb in size
 - > 70% of inversions and duplications > 10 Kb in size


22 276

Total number of annotated SVs:

2 415 (11%)



SV detection efficiency

* Experimental validation approach

- Large scale genotyping using the bovine EuroG10K SNP chip
- Conversion of SVs to "Virtual SNPs" (Nucleotide change around the 2 SV breakpoints)

Results of the experimental validation of SVs

Number of tested SVs : 331

Validation panel: 382 animals (15 dairy and beef breeds)

Number of successfully genotyped SVs: 255 (77%)

Validated SVs: 191 (75%)

- Observed Minor Allele Frequency (MAF) : 0.2
- Observed heterozygosity rate (He): 0.28
- Polymorphic Information Content (PIC) : 0.23

→ Informative markers

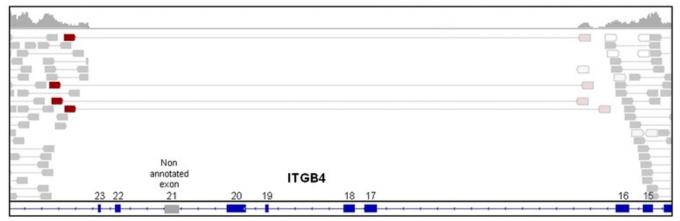
Linkage analyses

Biological impact of SVs

* **<u>Strategy 1</u>**: Link of SVs with genetic defects

Strategy 2: Link of SVs with complex traits

Strategy 1: Link of SVs with genetic defects


- Search for SVs in all animals already sequenced and declared as sick and/or carrying genetic defects.
- Interaction with ONAB (National Observatory of Bovine Abnormalities):
 - > Identification of bovine defects resembling human diseases caused by SVs.
 - Sequencing of these animals to look for SVs responsible for these genetic defects.
- Strategy 2: Link of SVs with complex traits

Link of SVs with genetic defects

Example: a homozygous deletion located within the *ITGB4* gene coding regions

IGV screenshot of BTA19: 56.86 to 56.96 Mb

<u>Genet Sel Evol</u>. 2015; 47(1): 37. Published online 2015 May 3. doi: <u>10.1186/s12711-015-0110-z</u> PMCID: PMC4417276 PMID: 25935160

Whole-genome sequencing identifies a homozygous deletion encompassing exons 17 to 23 of the *integrin beta 4* gene in a Charolais calf with junctional epidermolysis bullosa

Pauline Michot, Oscar Fantini, Régis Braque, Aurélie Allais-Bonnet, Romain Saintilan, Cécile Grohs, Johanna Barbieri, Lucie Genestout, Coralie Danchin-Burge, Jean-Marie Gourreau, Didier Boichard, Didier Pin,[®] and Aurélien Capitan[®]

Biological impact of SVs

Strategy 1: Link of SVs with genetic defects

- Search for SVs in all animals already sequenced and declared as sick and/or carrying genetic defects.
- Interaction with ONAB (National Observatory of Bovine Anomalies):
 - ▶ Identification of bovine defects resembling human diseases caused by SVs.
 - Sequencing of these animals to look for SVs responsible for these genetic defects.

Strategy 2: Link of SVs with complex traits

- Use of validated SVs to genotype a large number of animals with phenotypes
- Search for potentially causal variants (GWAS + functional annotation of variants).

Association between SVs and production traits

* Genotyping data

Breed	Polymorphic SVs	Number of genotyped animals
Montbéliarde	160	10 920
Normande	125	4 679
Holstein	138	25 777

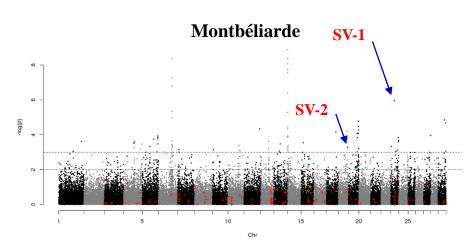
Phenotypes

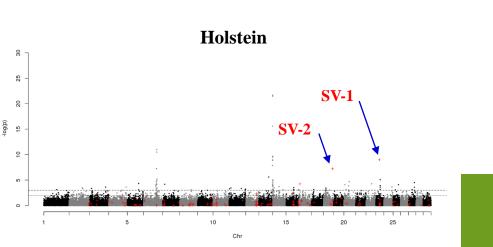
Five milk production traits

- ➢ milk yield
- ➢ fat yield
- > protein yield
- ➢ fat percentage
- protein percentage

Software

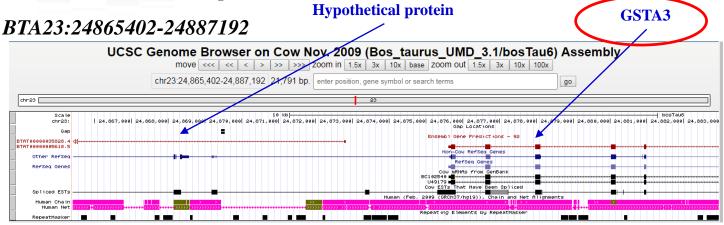
GCTA (Yang et al., 2011)

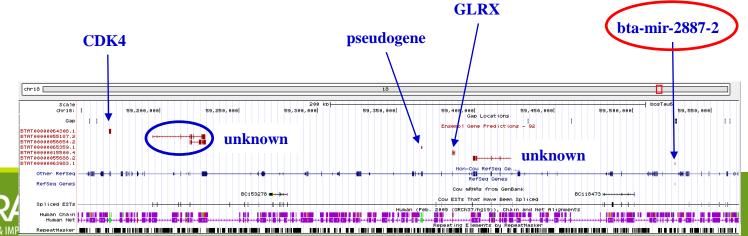



9

-log(p) 4

GWAS preliminary Results


Milk yield



Gene content of both deletions

SV-1: Deletion (21 789 bp)

SV-2: Deletion (521 005 bp) BTA18:59147723-59668729

.016

Conclusions

* Pan-genomic evaluation of SVs in cattle using whole genome sequences

State of the art today

- Parcel Mapping of SVs
 - \rightarrow \rightarrow Large scale identification
 - \rightarrow \rightarrow Characterization of the genetic variability of complex traits

Future spin off

- Improve genome knowledge
- Improve accuracy and persistence of genetic evaluations

