

Contrasting metabolic indicators of energy and stress status in slaughter lambs and beef cattle

Dave Pethick

S.Stewart, K. Loudon, G. Gardner, P. McGilchrist, J. Thompson, F. Dunshea, R. Polkinghorne, I. Lean and G. Tarr

Overview

- Blood Energy/Stress indicators at slaughter
- Beef contrasted to lamb
- What are the consequences if any?

Energy/stress measures in blood at point of slaughter (exsanguination)

- Glucose
- Lactate
- Non esterified fatty acids (NEFA)

Energy/stress measures in blood

■ Glucose

- ↓ [glucose] pre slaughter fasting
- 1 [glucose] acute pre slaughter stress (hepatic glycogenolysis)

■ Lactate

- 1 [lactate] muscle excursion and acute pre slaughter stress (muscle glycogenolysis)
- Non esterified fatty acids (NEFA)
 - û [NEFA] pre-slaughter fasting
 - û [NEFA] acute pre slaughter stress

General Aim

■ The Meat Standards Australia eating quality cut x cook prediction model

Could a panel of energy/stress markers at slaughter be possible to help improve the prediction of consumer sensory scores?

Hypothesis (s)

 Blood response of energy/stress markers to commercial slaughter in lambs and beef cattle will be similar

Stress response will relate to meat quality parameters (work in progress!)

Animals - Lamb

- n = 2,877, 7-10mo old , HCW 23kg, 2 years
- Extensively raised outdoors on 2 research farms
- 2 different abattoirs electrical stunning then immediate exsanguination
- 24-36 hours of total feed deprivation
- Wide range of sire genetics

Animals – Beef cattle

Beef 1

- Bos Indicus cross steers, 4 farms, abattoir 'A' (n= 343) [Nth Aust]
- Slaughtered 24-48 hours after dispatch

Beef 2

- Bos Taurus steers/heifers from King Island farms, abattoir 'B' (n=240)
 [Sth Aust]
- Slaughtered 24 hours after dispatch

Beef 3

- Bos Taurus steers/heifers from Tasmanian farms abattoir 'B' (n=244)
 [Sth Aust]
- Slaughtered 48-72 hours after dispatch
- HCW = 290±40kg, extensively raised outdoors on pasture
- Head percussion stunning then immediate exsanguination

Results – carbohydrate metabolism

(plasma mM)

	Glucose	Lactate	NEFA	D-3-OH Butyrate
Normal range	(2-4)	(0.5-1)	(0.5-0.15)	(0.3-0.5)
Lambs	4.7 ±0.9	3.5 ±2.3	1.2 ±0.5	0.4 ±0.1
Beef 1	$6.9_{\pm 0.9}$	9.4 ±3.2	0.4 ±0.2	0.2 ±0.1
Beef 2	7.4 ±1.2	14.5 ±3.3	0.3 ±0.2	0.2 ±0.1
Beef 3	6.2 ±0.9	12.0 ±2.5	0.6 ±0.3	0.3 ±0.1
Beef/Lamb	x 1.45	x 3.42	x 0.36	x 0.58

Conclusion

- û [glucose] and [lactate] in plasma at sticking
- MORE so in beef cattle
- Heightened adrenergic response
 - Hepatic glycogenolysis (glucose)
 - Muscle glycogenolysis (lactate)
- Muscle exertion
 - Muscle glycogenolysis (lactate)

Results – fat metabolism

(plasma mM)

Normal range	Glucose (2-4)	Lactate (0.5-1)	NEFA (0.05-0.15)	D-3-OH Butyrate (0.3-0.5)
Lambs	4.7 ±0.9	3.5 ±2.3	1.2 ±0.5	$0.4_{\pm 0.1}$
Beef 1	6.9 ±0.9	9.4 ±3.2	$0.4_{\pm 0.2}$	0.2 ± 0.1
Beef 2	7.4 ±1.2	14.5 ±3.3	0.3 ±0.2	0.2 ±0.1
Beef 3	6.2 ±0.9	12.0 ±2.5	0.6 ±0.3	0.3 ± 0.1
Beef/Lamb	x 1.45	x 3.42	x 0.36	x 0.58

Conclusion

- ① [NEFA] in plasma at exsanguination
- MORE so in lamb than beef cattle
- So for lamb
 - Greater response to time off feed ??
 - Or heightened lipid adrenergic/stress response ??

Lamb – fasted in pen versus fasted then slaughtered (Stewart et al 2018)

Beef fasting expt (van der Walt et al. 1993)

Conclusion

- ① [NEFA] due mainly to pre-slaughter fasting response
- This response is greater in lamb compared to beef
- Why ?
 - Rumen fill / retention ?
 - Metabolic scaling ?
 - Increase metabolic rate beyond scaling?

Possible Consequences - some examples

Markers for meat quality issues ????

Beef 1 - weak negative effect with 1 [glucose]

(Polkinghorne et al. (2018), 25mm grilled striploin, 7-10 days aging)

Beef 2 and 3 studies – effects on MSA score in 5 muscles (/100)

```
■ Glucose –ve effect 4 muscles = -2.5 points (not sign)
```

■ Lactate –ve effect 5 muscles = -3 points (2 sign)

■ NEFA +ve effect 5 muscles = +3 points (2 sign)

Loudon et al. Unpublished, 25mm grill, 10 and 20 days aging 5 muscles = eye round, outside, oyster, striploin, tenderloin

Another Previous beef study using \pm electric goads negative effect associated with $\hat{1}$ [lactate] = -4 points

Warner et al (2007)

Beef cattle

- So a possible association of ① [glucose] and ① [lactate] with small reduction in eating quality
- Clearly fat mobilization is modest and not associated with any reduction in eating quality

(ii) Carcase shrink - lamb

Carcase shrink due to fasting in lamb is very significant (Thompson et al 1897)

- O.1%/hr weight loss after about 12 hours
- Beef more like 0.03%/hour
- Strong NEFA response matches this difference

Thank you