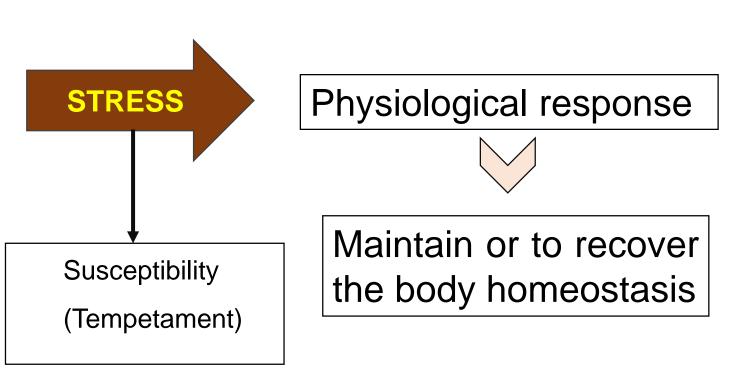
Are there any global indicators of early and late stress response in beef cattle?

J.O. Rosa¹, M.J. Carabaño², J. de la Fuente³ C. Meneses², C. Gonzalez², C. Pérez³, D.P. Munari¹, C.Diaz²

¹FCAV/UNESP, Jaboticabal, SP, Brazil

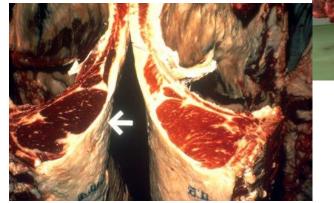
²INIA, Dpto. Mejora Genética Animal, Ctra. La Coruña Km 7.5, 28040 Madrid, Spain[.]

³ UCM, Dpto. Producción Animal, 28040 Madrid, Spain



Stress Response

Usual handling stress


- Passage through the chutes
- Human presence
- Pre-slaughter stress
 - Load in truck
 - Transport
 - Unloading in slaughterhouse
 - Wait in pens
 - Conduction aisle to the stunning box

Stunning box

Why study stress?

- Social value: Animal Welfare
- Easy handling
- Lower carcass yield and more carcass injuries
- Reduced meat quality

Worse reproductive, efficiency and immune status of the animal

Understanding responses of handling	the cattle	complex subject
---	---------------	--------------------

- Search via selection less reactive animals to avoid losses.
- Improve animal welfare and performance and meat quality

The aim of the present study is to:

- characterize the response to stress in two different periods, feedlot handling (F) and slaughter handling (S)
- to evaluate if the early response in F could be used to predict response at S using a set of biomarkers of stress in beef cattle

Material and Methods

- Blood samples of 80 Avileña-Negra Iberica male calves were collected in 2 time points: the feedlot (F) (between 4 and 7 days before finishing) and at the slaughterhouse (S) during exsanguination
- 7 biomarkers (albumin, cortisol, creatine kinase, glucose, lactate, lactate dehydrogenase and globulin) were determined in blood plasma

Material and Methods

Principal Component Analysis (PCA) to characterize physiogical components stress response

Logistic Regression + Linear Discriminant Analysis to identify a subset of the biomarkers of stress that best discriminate between the 2 stress situations

Results. PCA at feedlot

Feedlot	Dim.1	ctr	Dim.2	ctr	Dim.3	ctr
Albumin	0.15	1.15	0.58	21.53	0.24	4.94
СК	0.21	2.29	-0.05	0.15	0.83	60.67
Cortisol	0.64	21.24	0.56	19.89	0.07	0.37
Globulin	0.44	9.96	0.48	14.96	0.31	8.63
Glucose	0.7	26.05	0.38	9.44	-0.36	11.26
Lactate	0.25	3.36	0.73	33.92	-0.22	4.3
LDH	0.83	35.95	0.04	0.12	0.34	9.85

% of variance PC1 = 27.16 PC2 = 22.2 PC3 = 16.34 TOTAL VARIANCE EXPLAINED: 65.6

Results. PCA at the slaughterhouse

Slaugthter house	Dim.1	ctr	Dim.2	ctr	Dim.3	ctr
Albumin	0.62	18	0.31	5.74	0.35	10.3
СК	0.29	3.96	0.2	2.53	0.73	46.1
Cortisol	0.69	22.3	-0.48	13.9	0.16	2.17
Globulin	0.46	9.62	-0.61	22.5	0.09	0.73
Glucose	0.57	14.9	0.37	8.57	-0.59	30.5
Lactate	0.82	30.9	0.26	4.09	-0.28	6.67
LDH	-0.08	0.3	0.83	42.7	0.21	3.65
% of variance	PC1 =	PC1 = 30.8 PC2 = 23.3 PC3			= 16.6	
	TOTAL VARIANCE EXPLAINED: 70.6					

Results. Contribution of each marker to the variance and weight of each trait.

	Fee	dlot	Slaughter House			
Biomarkers	Cont. Weight		Cont.	Weight		
Albumin	5.9	0.209	8.6	0.511		
СК	10.6	0.182	9.4	0.257		
Cortisol	10.2	0.310	10.5	0.127		
Globulin	7.4	0.277	8.3	0.014		
Glucose	11.0	0.216	11.6	0.164		
Lactate	9.1	0.194	11.6	0.267		
LDH	11.4	0.290	10.6	0.204		

Results. Missmatching between Feedlot and Slaughter house

All	biomark	ers	О	nly lactat	e		Only CK		В	est Mode	*
	F	S		F	S		F	S		F	S
F	91.25	8.75	F	92.5	7.5	F	23.7	76.25	F	92.5	7.5
S	13.75	86.25	S	15	85	S	22.5	77.5	S	12.5	87.5

*Best Model=Albumin+Glucose+Lactate)

Results. Correlation between biomarkers of stress, Warner-Bratzler (WB) shear force and pH at 0 hours.

	WB	рН
Albumin_F	0.19	-0.35
Cortisol_F	0.05	-0.1
CK_F	0.05	-0.03
Glucose_F	-0.06	0.16
Lactate_F	0.4	-0.29
LDH_F	-0.05	0.06
Globulin_F	0.08	-0.24
Albumin_S	0.43	-0.1
Cortisol_S	0.3	-0.19
CK_S	0.11	0.02
Glucose_S	-0.05	-0.13
Lactate_S	0.07?	-0.1
LDH_S	-0.03	0.25
Globulin_S	0.16	-0.17

Conclusions

- The physiological response to stress was different in F and S, therefore, the stress response is modulated by different mechanisms depending on the stress situation
- At F: LDH, CORTISOL AND GLOBULINE had the most important contribution
- At S: LACTATE, ALBUMINA AND CK were the main indicator of stress

muscle response \rightarrow negative impact on meat quality

- LACTATE, GLUCOSE AND ALBUMINA best discriminate the two different stress conditions
- The others maybe global stress markers and therefore they could be used in combination as a selection criteria.

ACKNOWLEDGMENTS

Temperament and effects of stress

Depends on its genetic background, prior experience, the types and the duration of the stressors, age, sex, etc.

- Individuals with a very excitable temperament may become increasingly stressed
 - More difficult to handle
 - Carcasses with greater incidence of injuries
 - Inferior meat quality traits
 - Growth rates, reproduction and immune functions reduced