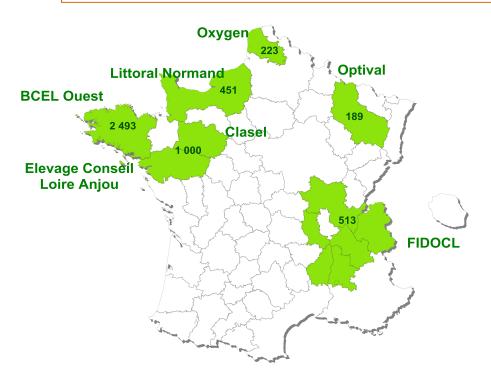


LIFE CARBON DAIRY Improving the dairy farm efficiency with the milk Carbon Footprint assessment

Catherine BROCAS French Livestock Institute – IDELE

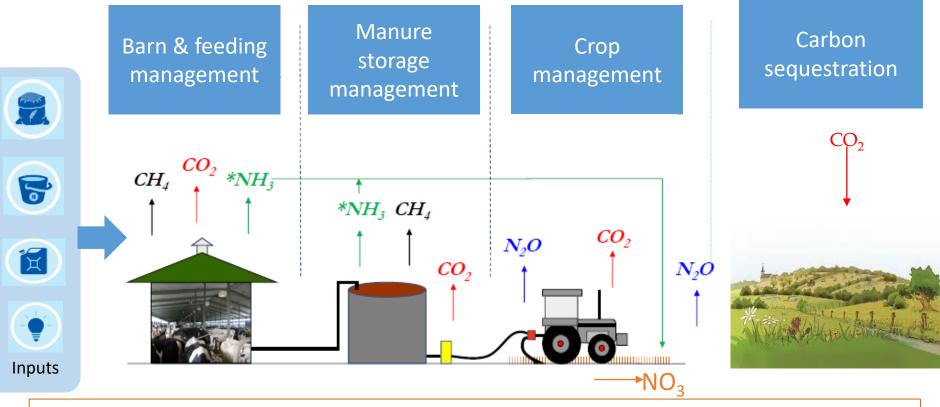

Catherine Brocas¹, Samuel Danilo¹, Sindy Moreau¹, Agnès Lejard², Jean-Baptiste Dolle¹

1-Institut de l'élevage 2-France Conseil Elevage

LIFE CARBON DAIRY initiative

To reduce by 20% the milk carbon footprint over 10 years To raise awareness farmers

- → 5 years : 2013 2018
- → 14 partners
- → 6 regions
- ➔ One national tool



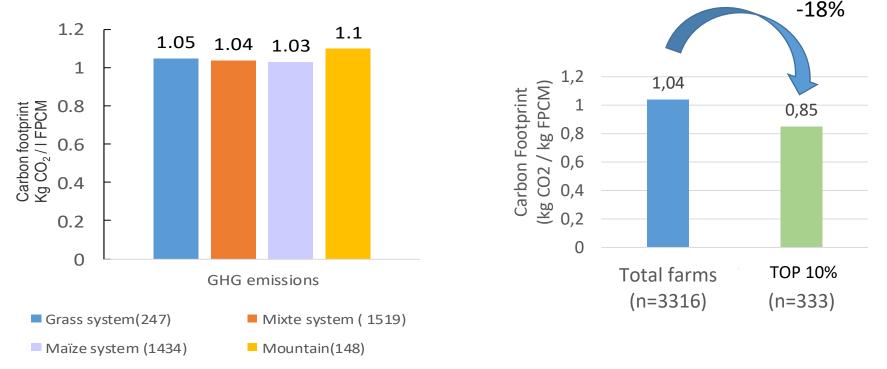
- → 210 advisers trained
- → 4 869 farmers involved
- → Two CF evaluation : year 2013 & 2016 for 2314 farmers

GHG emissions and carbon sequestration

LCA analysis at farm scale

→ Development of the CAP'2ER tool to assess farms

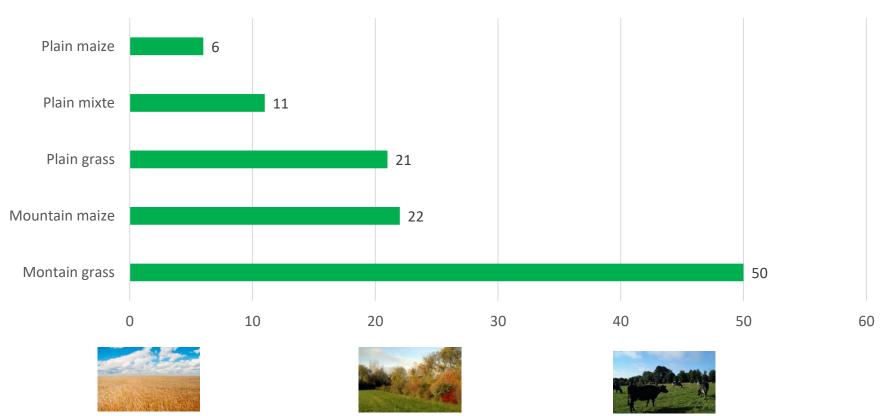
General Farms characteristics – Year 2013


		LOWLAND		
n=3 348	Mountains	Grass	Mixte	Maïze
	N=148	N=247	N=1519	N=1434
Farm size- ha	112	127	98	87
Cash crop - ha	11	28	28	31
Forage area- ha	101	99	70	56
% Maize / forage area	8%	12%	32%	49%
Number of milking cows	55	64	61	62
Milk production per cow, liter FPCM/cow/year	6 320	6 590	7 460	7 800

→ Farms classification according to localization and part of maïze in the forage area

GHG emissions and carbon footprint

- No difference between production systems...
- but high difference between efficient and less efficient dairy farms



Oair

→ There is room for progress to be made in every production systems

GHG emissions compensation by Carbon sequestration (%)

There is a large variation between production system
The carbon sequestration compensate GHG emissions by 11%.

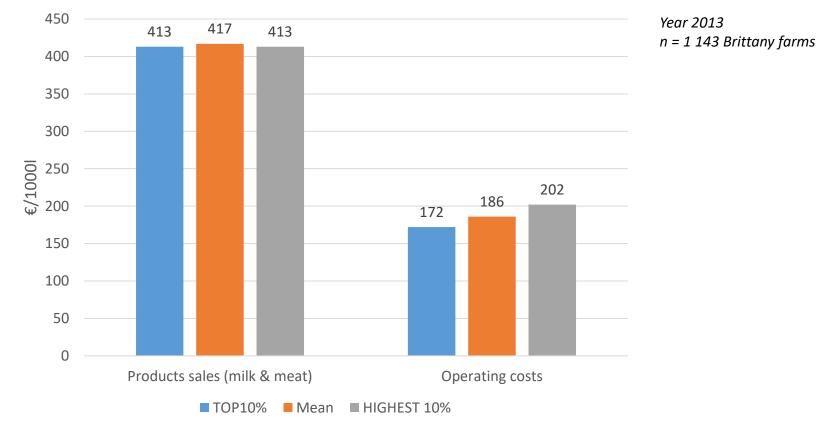
Correlation between farms' practices and carbon footprint

NO CORRELATION

Parameter	Correlation with GCF
Number of cows	0.002
% Maize / Total area	-0.027

CORRELATION

Milk production per cow, liter	-0.436
FPCM/cow/year	-0.430
Age at first calving, months	0.288
Replacement rate, %	0.079
Concentrate rate, g/l milk	0.271
N-fertilizer use, kg N/ha dairy herd	0.064


Farms practices and carbon footprint of the lowest 10%

	Mean	TOP 10%
Area dedicated to the dairy herd - ha	64	56
Total milk sold – I FPCM	432	440
Number of cows	61	57
Milk production per cow, liter FPCM/cow/year	7,490	8,220
Age at first calving, months	29	28
Concentrate rate, g/l milk	166	146
N-fertilizer use, kg N/ha dairy herd	145	122
Carbon footprint kg CO2/I FPCM	1.04	0.87

→ More milk sold with less cows and farm size for the Lowest 10% → Milk production, number of heifers and nitrogen crop managment are the main mitigation practices

Carbon footprint and economic efficiency

→ 30 €/1000 | between the higher and lower classes of carbon footprint
→ Operating costs are the main driver of the results

Farms practices and economic results of the lowest 10% carbon footprint

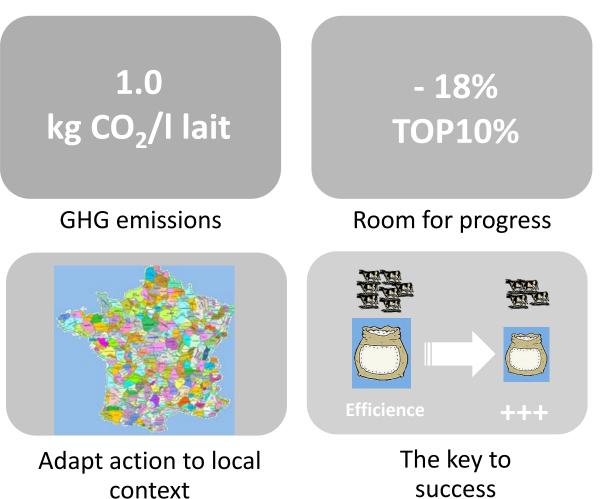
	ТОР	Mean	Highest
	10%	Witali	10%
Carbon footprint kg CO2/l FPCM	0.88	1.01	1.2
Variable costs - €/1000 l FPCM	172	186	202
Milk production per cow, liter FPCM/cow/year	8,266	7,586	6,545
Age at first calving, months	27	28.2	29.6
Concentrate rate, g/l milk	157	171	174
N-fertilizer use, kg N/ha dairy herd	136	156	162

→ The main driver : milk production.

They produce more milk with less!

→ the global system efficiency is the key

EAAP 2018 - Dubrovnik, Croatia, 27th to 31st August 2018


The main mitigation practices and farmers choices

		Farmers' choice	Reduction potential
1	Herd management	27%	3-16%
2	Quantity of concentrate and N excretion	19%	1-7%
3	Mineral nitrogen fertilization	16%	1-6%
4	Protein autonomy	13%	0,2-2%
	Fuel consumption	9%	0-2%
	Electricity consumption	9%	<0,1%
	TOTAL		10% to 23%

 \Rightarrow Efficiency is the first farmers' objectives and permit to reduce carbon footprint

Conclusions

Improving production efficiency and reducing the milk carbon footprint are highly complementary with positive impact on economy

Catherine.brocas@idele.fr

Conclusions of the pilot project LIFE

- When farmers are engaged, reduction of the milk carbon footprint is possible
- Improving production efficiency and reducing the carbon footprint of milk production are highly complementary with positive impact on economy.
- The milk carbon footprint assessment is a good means to provide farmers with information about GHG emissions from dairy system and the link with farming practices.

