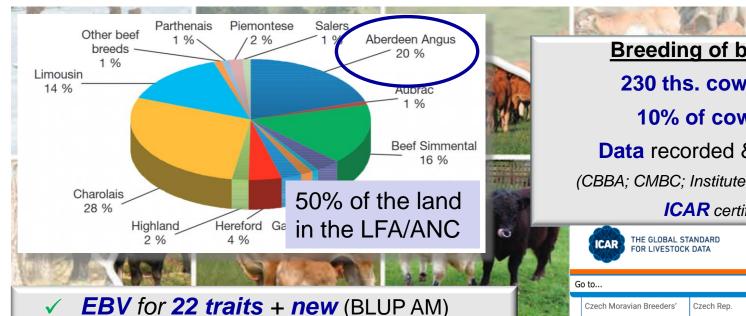


Economic importance of traits of Angus breed in organic system


Krupová Z., Krupa E., Přibyl J., Kašná E., Wolfová M.

krupova.zuzana@vuzv.cz

Institute of Animal Science, Prague, Czech Republic

Actual situation in the Czech Republic

Breeding of beef cattle:

230 ths. cows (+3%/yr)

10% of cows in PT

Data recorded & processed

(CBBA; CMBC; Institute of Animal Science)

ICAR certification

Network. Guidelines. Certifications.

Czech Moravian Breeders' Corporation Inc

Czech Rep.

· Identification and production recording July 2020

direct & maternal / ♂, ♀, heifers

muscling, longevity)

(growth, calving perf., exterior,

Simple SI (relative BV)

Economic Selection Index

Economic weights (EWs)

The aim:

calculate economic weights of the **selection** traits & **others** (16 in total) for AA breed

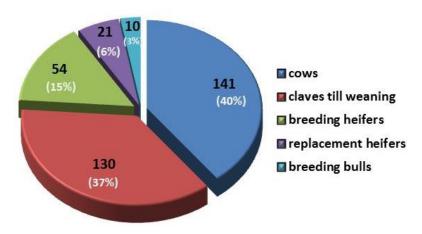
Material & Methods (1)

Aberdeen Angus (AA)

- √ naturally polled
- √ early maturity
- ✓ no calving difficulties
- ✓ excellent fertility
- ✓ good carcass value

Breeding goal:

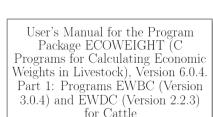
24-28 mo. at 1st calving 95% easy


95 calves weaned (365d CI)

Prefered high: ADG, muscling and longevity

Production system

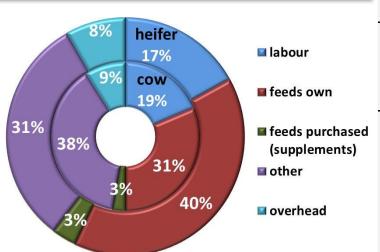
- Max. use of natural resources & min. of external inputs & adapted to conditions (IFOAM, 2008)
- ❖ 540 ha/farm, 0.26 cow/ha agr.land, 74% perm.grass. (own economic evaluation of AA)
- outdoor on pasture, shelters in winter
- pure breeding & crossing
- natural mating
- sold: breeding animals & fattening
- herd structure:



Economic weights (EWs) of traits

- direct impact of given trait on farm profit (↑ by 1 unit)
- bio-economic model of the program EWBC (ECOWEIGHT; Wolf et al., 2013)

≈ 600 input data (herd structure, production, costs, revenues)



by Jochen Wolf, Marie Wolfová and Emil Krupa 16th December 2013

Input data

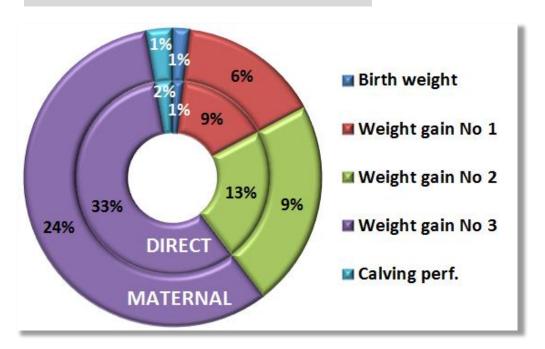
Annual cost: 854 € per cow

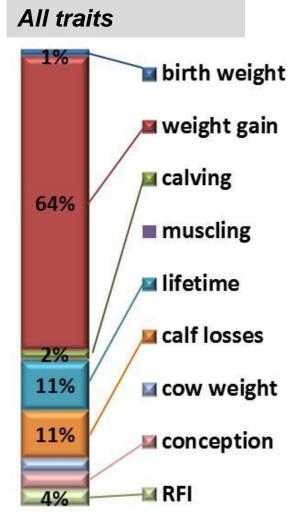
427 € per heifer

Trait (unit)		Mean	GSD
actual	Birth weight of calves (kg)	37	1.5
	Weight gain of calves from birth to 120d (kg)	148	7.2
	from 120 to 210d (kg)	115	10.2
	from 210 to 365d (kg)	243	21.5
	Calving performance (class)	1.013	0.03
evaluated	Fleshiness (class)	4.206	0.025
	Fat covering (class)	1.951	0.012
	Dressing percentage (%)	0.65	1.1
	Productive lifetime of cows (year)	8.12	0.89
other	Losses of calves at calving (%)	0.32	0.11
	Losses of calves from till weaning (%)	3.2	0.99
	Mature weight of cows (kg)	680	20.5
	Conception rate of heifers (%)	97	1.2
	Conception rate of cows (%)	94	1.8
	RFI of breeding heifers (kg DM/d)	0	0.13
	RFI of adult animals (kg DM/d)	0	0.23

Marginal EWs of actual criteria + news

Trait (unit)		EW (€/unit/♀/yr)	
		direct	maternal
actual	Birth weight of calves (kg)	2.1	1.5
	Weight gain of calves from birth to 120d (kg)	3.5	2.5
	from 120 to 210d (kg)	3.6	2.6
	from 210 to 365d (kg)	4.4	3.2
	Calving performance (class)	-158	-116
evaluated	Fleshiness (class)	-31	
	Fat covering (class)	-2.0	
	Dressing percentage (%)	0.7	
	Productive lifetime of cows (year)		50
other	Losses of calves at calving (%)	-22	-16
	Losses of calves from till weaning (%)	-23	-17
	Mature weight of cows (kg)		-0.6
	Conception rate of heifers (%)	0.7	
	Conception rate of cows (%)		8.6
	RFI of breeding heifers (kg DWd)	-34	
	RFI of adult animals (kg DM/d)		-46


Impact of the traits among each other not considered to avoid double counting


Results (2)

Relative EWs (%) – direct & maternal component

Actual selection candidates

Conclusion

- ✓ weight gain of claves the most important (64%)
- ✓ productive lifetime the next selection candidate (breeding objective done)
 - ✓ EW (11%)
 - ✓ EBV under evaluation
- ✓ survival of calves till weaning (11%)
- ✓ conception rate of \bigcirc (11%)
- ✓ RFI (4%) = lower price of feed (pasture) and extensity

Future benefits for the AA population:

- ✓ routine testing & genetic parameters & EBV of new traits
- discussion with breeders & construct economic SI (variants)
- ✓ calculate predicted sel. response & optimise the ∆G

69th EAAP Annual Meeting, August 27th - 31st 2018 Dubrovnik, Croatia, Session No. 34

krupova.zuzana@vuzv.cz

Institute of Animal Science, Prague, Czech Republic

Study was supported by project MZE-RO0718 V003 of the Czech Republic