
DANISH TECHNOLOGICAL

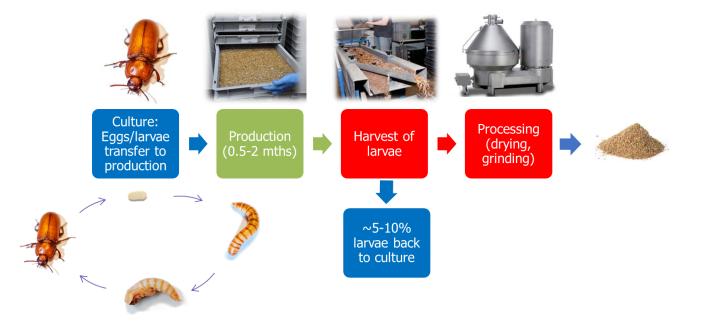
Research and development efforts on optimizing key parameters in industrial insect production

EAAP 2018, 29 August

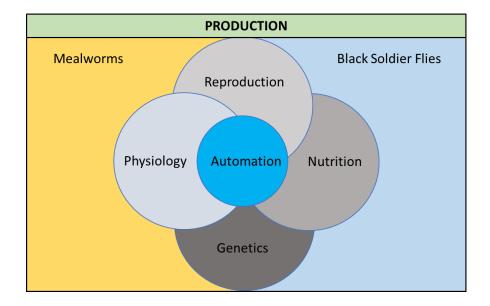
Lars-Henrik Lau Heckmann, Technology manager, DTI

Main challenges of the insect industry

Upscaling (industrial level)


Legal barriers (EU) in feed and food

Consumer acceptance



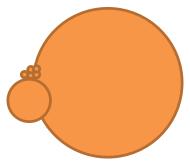
Generic production process

Focus areas of DTI Insect Production Team

Danish public R&D projects 2017/18 (>100k €)

DTI lead highlighted in bold

Black Solider Fly (BSF)


- <u>WICE</u> (390k €, MUDP)
- SUPERIOR (375k €, MU<DP)
- Green Biorefining (360k €, F&I)
- BIOFISK (~100k €, Interreg/EU)

>7M € portfolio

Crickets

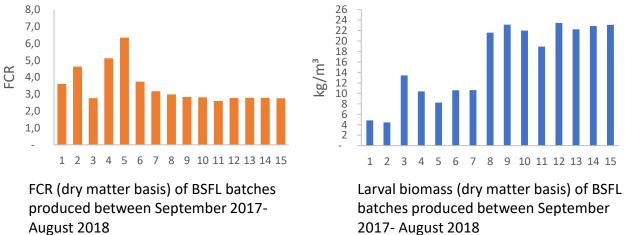
- GREEINSECT (1.34M €, DANIDA)
- Syngja (200k €, IFD)
- Synjga2 (185 €, FFI)

Mealworms

- inVALUABLE (3.7M €, IFD)
- SUSMEAL (1.1M €, IFD, Eurostars)
- VALIN (175k €, GUDP)
- Wholi Foods (~100k €, IFD)
- ENORM (~100k €, IFD)
- NLF (135k €, IFD)
- Ikadan (135k €, IFD)

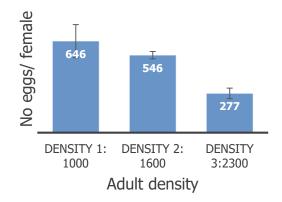
Black Soldier Fly (Hermetia illucens)

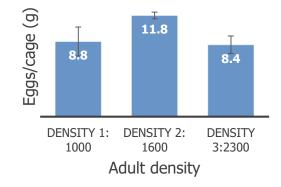
- Assessment of the suitability of different feeding substrates
- Optimization of BSFL growth and Feed Conversion Ratio (FCR)
- Optimization of reproductive output



Performance of BSFL reared on different substrates

Substrates tested (Project)	Applicability	FCR (dry matter)
Grass, lucerne and red clover (Green Biorefining)	N/A (tested individually at 100% inclusion level)	-
Spent grains + different carbohydrate- rich by-products (SUPERIOR)	Medium-high	-
Dairy by-products (SUPERIOR)	Medium	-
Beach cast + spent grains (BIOFISK)	Low	7-10
Beach cast + catering waste (BIOFISK)	Medium	3-7
Catering waste (<u>WICE</u>)	High	1.6-2.4
Chicken feed	High	2.0-2.8


Optimization of BSFL reared on chicken feed


Feeding amount, feeding frequency, feed conditioning, larval density

2017- August 2018

Reproduction of BSF – optimizing fly density

Production of eggs per female at different fly densities (avg \pm sd)

Total egg production per cage at different fly densities (avg \pm sd)

Production estimation for 1 m ³ reproduction cage				
	Egg production (g)	Neonate production (kg)	Larval production (kg)	
Density 2 (4000 adults/m ³)	29.5	2.4	134	

Common mealworm (Tenebrio molitor)

- Reproduction (adult density and egg production)
- Larval growth and biomass output
- GHG and heat production

Computational Fluid Dynamic (CFD) modelling

Tenebrio reproduction @ lab-scale

RESEARCH ARTICLE

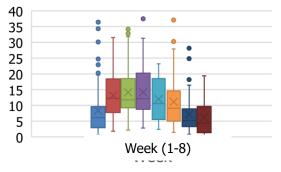
https://doi.org/10.3920/JIFF2017.0013 Published Online: February 13, 2018

Impact of density, reproduction period and age on fecundity of the yellow mealworm *Tenebrio molitor* (Coleoptera: Tenebrionidae)

LE. Berggreen ①, J. Offenberg ①, M. Calis ①, L.-H. Heckmann ① Corresponding author: Ihih@teknologisk.dk

Journal of Insects as Food and Feed: 4 (1) - Pages: 43 - 50

Buy this article


20 400 Total number of larvae Larvae / female / day 15 300 10 200 5 100 0 0 0.11 0.21 0.42 0.84 0.11 0.21 0.42 0.84 Density (beetles/cm²) Density (beetles/cm²)

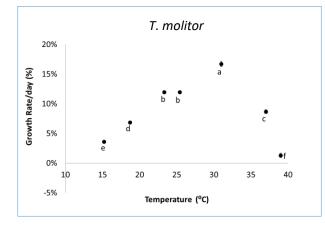
Tenebrio reproduction @ pilot-scale

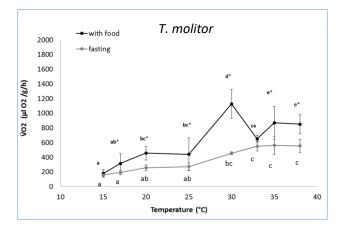
140 120 100 80 60 40 20 0 ______ NUNUNUNUNUN ______ 1 1 1 1 1 1 OHHNHNNOOHHHNOHHNNNH+ *100 g eggs = \sim 1.7 mill. eggs

Total egg production* (g/box) over 8 weeks

Eggs (g)/week (400x600 box)

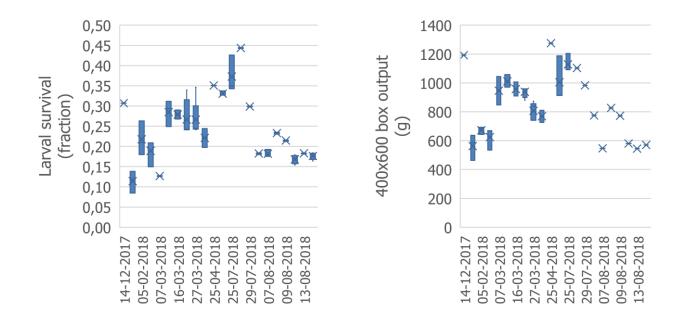
Tenebrio larval growth and respiration@ lab-scale

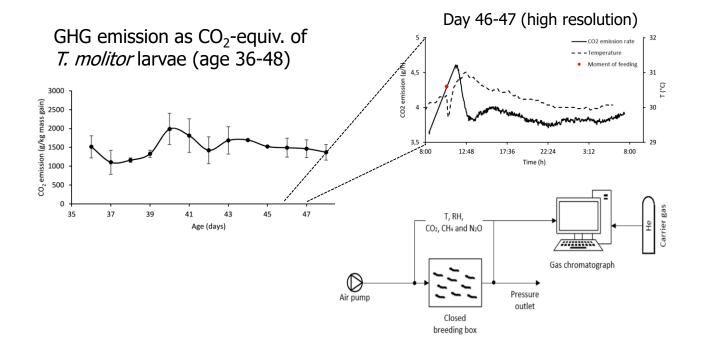

Journal of Insect Physiology


journal homepage: www.elsevier.com/locate/jinsphys

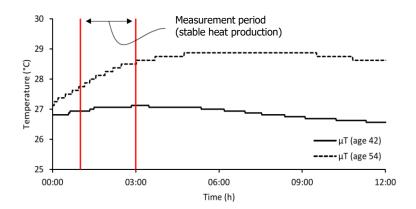
Role of temperature on growth and metabolic rate in the tenebrionid beetles *Alphitobius diaperinus* and *Tenebrio molitor*

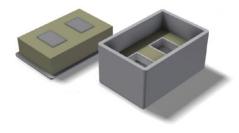
Julie Dahl Bjørge^{a,c}, Johannes Overgaard^a, Hans Malte^a, Natasja Gianotten^b, Lars-Henrik Heckmann^{c,*}


^a Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark ^b Proti-Farm R&D BV, 3852 AB Ermelo, The Netherlands ^c Danish Technological Institute, Life Science, 8000 Aarhus C, Denmark



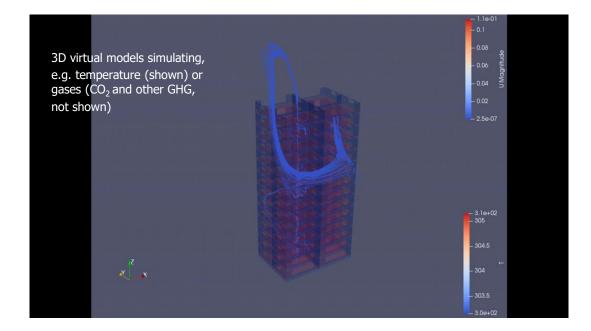
Tenebrio larval growth @ pilot-scale


Measurement of key parameters @ pilot-scale CO₂ and other GHG


Measurement of key parameters @ pilot-scale

Temperature/heat production

Analysis of heat production of *T. molitor* larvae (age 42 and 54)



Insulation box for measurement of heat production

Final output: Calculation of heat production over time applicable for assessment at insect production level

CFD modelling: Simulation of key parameters @ large-scale

THANK YOU!

Lars-Henrik Heckmann E: <u>LHLH@dti.dk</u> M: +45 7220 1537