

Novel maternal traits affecting piglet survival

S. M. Matheson¹, G. A. Walling², R.J. Thompson¹, I. Kyriazakis¹, S. A. Edwards¹

1 Agriculture – School of Natural & Environmental Sciences, Newcastle University 2 JSR Genetics, Ltd

1

Selection for hyperprolific sows:

- Increased litter size
- More piglets being born with reduced birth weight (Rutherford et al, 2013; Root et al, 2012)
- More intra-litter birth weight variation (Rutherford et al, 2013; Baxter et al, 2013)
- Increased crushing risk

Photo courtesy of E. Baxter (SRUC)

More than just low birth weight?

- Low birth weight piglets may be:
- Small for gestational age (SGA)
- Intrauterine growth restricted/retarded (IUGR)
- IUGR piglets typically identified by birthweight

www.vetprodukt.hu

 However, birthweight does not indicate whether a piglet has been exposed to IUGR during development

 Chevaux et al 2010 developed scoring system for identifying IUGR piglets based on head morphology

Normal vs IUGR head shape

Photo courtesy of E. Baxter (SRUC)

IUGR illustration Hales et al, 2013

Posture change and crushing

- Characterise differences in lying quality
- Accelerometer traits rump-mounted

Accelerometer traits

- Duration of transition
- Maximum acceleration
- Rate of change of acceleration (JERK)
- Range of acceleration
- Rate of pitch change

Rate of roll change

Data collection

- Data collection over 52 weeks
- JSR multiplier herd (2015-2016)
- 1,575 farrowings (862 individual sows; 21,159 piglets)

For each litter	Subset of litters
Proportion IUGR	Proportion crushed – Birth-processing
Proportion SURV (processing)	Proportion crushed – Processing-weaning
av BWT	Accelerometer traits – Downward transitions
sd BWT	Accelerometer traits – Sideways transitions
Littersize	

Results - Proportion of IUGR in a litter

	IUGR- PROP	avBWT	sdBWT	Littersize	SURV- PROP
IUGR-PROP	0.20 ± 0.05	-0.68 ± 0.01	0.27 ± 0.02	0.38 ± 0.02	-0.20 ± 0.02
avBWT	-0.90 ± 0.06	0.33 ± 0.07	-0.07 ± 0.03	-0.60 ± 0.02	0.27 ± 0.02
sdBWT	-0.29 ± 0.24	0.60 ± 0.18	0.12 ± 0.04	0.19 ± 0.03	-0.12 ± 0.03
Littersize	0.46 ± 0.20	-0.59 ± 0.15	-0.52 ± 0.29	0.11 ± 0.05	-0.14 ±0.02
Surv-PROP	-0.80 ± 0.32	0.84 ± 0.29	0.53 ± 0.41	-0.62 ± 0.36	0.04 ± 0.03
Repeatability	0.29 ± 0.03	0.33 ± 0.07	0.16 ± 0.04	0.24 ± 0.03	0.13 ± 0.04

Asreml model – parity !r ANIMAL ide.(ANIMAL)

IUGR Conclusions

- Piglet survival is phenotypically impaired by large litter size and low piglet birth weight (nothing new)
- IUGR has detrimental effects on survival these are in addition to the influence of birth weight
- IUGR using head shape as a simple phenotypic marker is amenable to genetic selection
- Selection at the sow level against IUGR could be highly effective in improving piglet survival
- Selection for lower proportion of IUGR in a litter has favourable genetic correlations with average birth weight and survival
- However, the genetic correlation with litter size is unfavourable

Accelerometer traits and crushing – birth to processing

- JERK —
- downwards transition (P=0.02)

- JERK*FLOOR –
- downwards transition (P<0.001)</p>

Accelerometer traits and crushing – birth to processing

- MAX Acceleration –
- downwards transition (P=0.03)

- MAX Acceleration*DURATION –
- downwards transition (P=0.04)

Accelerometer traits and crushing – birth to processing

- DURATION —
- sideways transition (P=0.006)
- DURATION*Sow Condition –
- sideways transition (P=0.001)
- Range of acceleration –
- sideways transition (P=0.02)

Accelerometer traits and crushing – processing to weaning

- Maximum littersize –
- downwards transition (P<0.001)</p>

- MAX Acceleration –
- downwards transition (P=0.02)

Heritabilities – accelerometer traits

Birth – Processing		Processing - Weaning		
JERK downwards	0.007 ± 0.003			
MAX ACC downwards	0.052 ± 0.022	MAX ACC downwards	0.000 ± 0.000	
DURATION downwards	0.004 ± 0.011			
DURATION sideways	0.015 ± 0.021			
RANGE ACC sideways	0.056 ± 0.021			

- Sow posture transition affects crushing both directly and in interaction with both other transition features and with sow body composition and environment
- Transition features do not appear to be particularly heritable in the subset of sows

Stephanie Matheson

Newcastle University

Stephanie.matheson@newcastle.ac.uk

www.fp7-prohealth.eu