Novel maternal traits affecting piglet survival S. M. Matheson¹, G. A. Walling², R.J. Thompson¹, I. Kyriazakis¹, S. A. Edwards¹ 1 Agriculture – School of Natural & Environmental Sciences, Newcastle University 2 JSR Genetics, Ltd 1 ## Selection for hyperprolific sows: - Increased litter size - More piglets being born with reduced birth weight (Rutherford et al, 2013; Root et al, 2012) - More intra-litter birth weight variation (Rutherford et al, 2013; Baxter et al, 2013) - Increased crushing risk Photo courtesy of E. Baxter (SRUC) ## More than just low birth weight? - Low birth weight piglets may be: - Small for gestational age (SGA) - Intrauterine growth restricted/retarded (IUGR) - IUGR piglets typically identified by birthweight www.vetprodukt.hu However, birthweight does not indicate whether a piglet has been exposed to IUGR during development Chevaux et al 2010 developed scoring system for identifying IUGR piglets based on head morphology # Normal vs IUGR head shape Photo courtesy of E. Baxter (SRUC) IUGR illustration Hales et al, 2013 # Posture change and crushing - Characterise differences in lying quality - Accelerometer traits rump-mounted #### Accelerometer traits - Duration of transition - Maximum acceleration - Rate of change of acceleration (JERK) - Range of acceleration - Rate of pitch change Rate of roll change #### Data collection - Data collection over 52 weeks - JSR multiplier herd (2015-2016) - 1,575 farrowings (862 individual sows; 21,159 piglets) | For each litter | Subset of litters | |------------------------------|---| | Proportion IUGR | Proportion crushed –
Birth-processing | | Proportion SURV (processing) | Proportion crushed – Processing-weaning | | av BWT | Accelerometer traits – Downward transitions | | sd BWT | Accelerometer traits – Sideways transitions | | Littersize | | # Results - Proportion of IUGR in a litter | | IUGR-
PROP | avBWT | sdBWT | Littersize | SURV-
PROP | |---------------|--------------------|--------------------|--------------------|--------------------|--------------------| | IUGR-PROP | 0.20 ± 0.05 | -0.68 ± 0.01 | 0.27 ± 0.02 | 0.38 ± 0.02 | -0.20 ± 0.02 | | avBWT | -0.90 ± 0.06 | 0.33 ± 0.07 | -0.07 ± 0.03 | -0.60 ± 0.02 | 0.27 ± 0.02 | | sdBWT | -0.29 ± 0.24 | 0.60 ± 0.18 | 0.12 ± 0.04 | 0.19 ± 0.03 | -0.12 ± 0.03 | | Littersize | 0.46 ± 0.20 | -0.59 ± 0.15 | -0.52 ± 0.29 | 0.11 ± 0.05 | -0.14 ±0.02 | | Surv-PROP | -0.80 ± 0.32 | 0.84 ± 0.29 | 0.53 ± 0.41 | -0.62 ± 0.36 | 0.04 ± 0.03 | | | | | | | | | Repeatability | 0.29 ± 0.03 | 0.33 ± 0.07 | 0.16 ± 0.04 | 0.24 ± 0.03 | 0.13 ± 0.04 | Asreml model – parity !r ANIMAL ide.(ANIMAL) #### **IUGR Conclusions** - Piglet survival is phenotypically impaired by large litter size and low piglet birth weight (nothing new) - IUGR has detrimental effects on survival these are in addition to the influence of birth weight - IUGR using head shape as a simple phenotypic marker is amenable to genetic selection - Selection at the sow level against IUGR could be highly effective in improving piglet survival - Selection for lower proportion of IUGR in a litter has favourable genetic correlations with average birth weight and survival - However, the genetic correlation with litter size is unfavourable ## Accelerometer traits and crushing – birth to processing - JERK — - downwards transition (P=0.02) - JERK*FLOOR – - downwards transition (P<0.001)</p> ## Accelerometer traits and crushing – birth to processing - MAX Acceleration – - downwards transition (P=0.03) - MAX Acceleration*DURATION – - downwards transition (P=0.04) ## Accelerometer traits and crushing – birth to processing - DURATION — - sideways transition (P=0.006) - DURATION*Sow Condition – - sideways transition (P=0.001) - Range of acceleration – - sideways transition (P=0.02) # Accelerometer traits and crushing – processing to weaning - Maximum littersize – - downwards transition (P<0.001)</p> - MAX Acceleration – - downwards transition (P=0.02) #### Heritabilities – accelerometer traits | Birth – Processing | | Processing - Weaning | | | |--------------------|-------------------|----------------------|-------------------|--| | JERK downwards | 0.007 ± 0.003 | | | | | MAX ACC downwards | 0.052 ± 0.022 | MAX ACC downwards | 0.000 ± 0.000 | | | DURATION downwards | 0.004 ± 0.011 | | | | | DURATION sideways | 0.015 ± 0.021 | | | | | RANGE ACC sideways | 0.056 ± 0.021 | | | | - Sow posture transition affects crushing both directly and in interaction with both other transition features and with sow body composition and environment - Transition features do not appear to be particularly heritable in the subset of sows # Stephanie Matheson #### **Newcastle University** Stephanie.matheson@newcastle.ac.uk www.fp7-prohealth.eu