RELATIONSHIP BETWEEN FEED EFFICIENCY AND PHYSIOLOGICAL STRESS PARAMETERS IN **D**UROX X **I**BERIAN PIGS

Iberian pig production:

- 100% Iberian
- 🗗 Duroc x 🕄 Iberian
- Extensive "Montanera" (5%)
- Intensive fattening(69%)

Introduction

A Hypothesis and Review of the Relationship between Selection for Improved Production Efficiency, Coping Behavior, and Domestication

Wendy M. Rauw^{1,2*}, Anna K. Johnson², Luis Gomez-Raya^{1,2} and Jack C. M. Dekkers²

Resource allocation on a limited Budget:

Energy from food = Energy in product + Loss

- What comes out must be met by input
- \$ Input used by one process is not available for another one

Maintenance

Activity

Welfare (stress)

Health (immune)

IMPROVED FEED EFFICIENCY

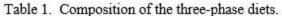
Maintenance


Activity

Welfare (stress)

Health (immune)

Reduced ability to respond to stress, or


Reduced stress response

MATERIAL & METHODS

53 🗗 Duroc x 🕄 Iberian pigs

January – June 2017 (124 days)

3 Diets: Growth − Fattening − Finishing Periods

	Growth	Fattening	Finishing
Netto Energy (kcal/kg)	2258	2498	2420
Crude Protein, %	13.7	13.5	12.75
Lys	0.76	0.68	0.55
Met	0.27	0.23	0.23
Crude Fat, %	4.1	7.5	5.1
Crude Fiber, %	4.6	4.2	4.5
Crude Ash, %	6	4.6	4.6
Calcium, %	0.77	0.48	0.51
Phosphorus, %	0.48	0.42	0.44
Sodium, %	0.24	0.23	0.25
Duration (wk)			
REP 1	8	5	4.7

MATERIAL & METHODS

Every 6-8 days measurement of body weight (BW) and feed intake (FI)

weight gain (BWG), feed efficiency (FCE, RFI)

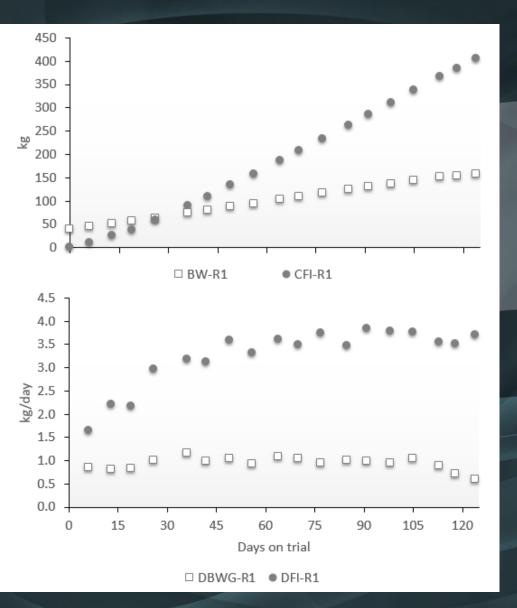
Within Period:

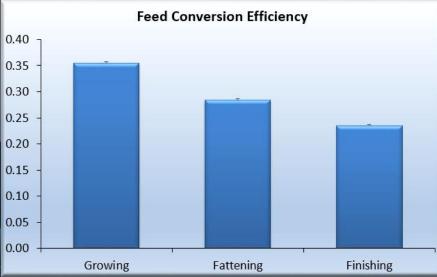
$$DFI_{i} = b_{0} + (b_{1} \times BW_{i}^{0.75}) + (b_{2} \times DBWG_{i}) + (b_{3} \times BFT_{i}) + RFI_{i}$$

FCE = BWG/FI

Blood samples during restraint © Glucose, Lactate, Cortisol Day 1 (growing), day 78 (fattening), day 125 (slaughter)

At Slaughter: fat thickness

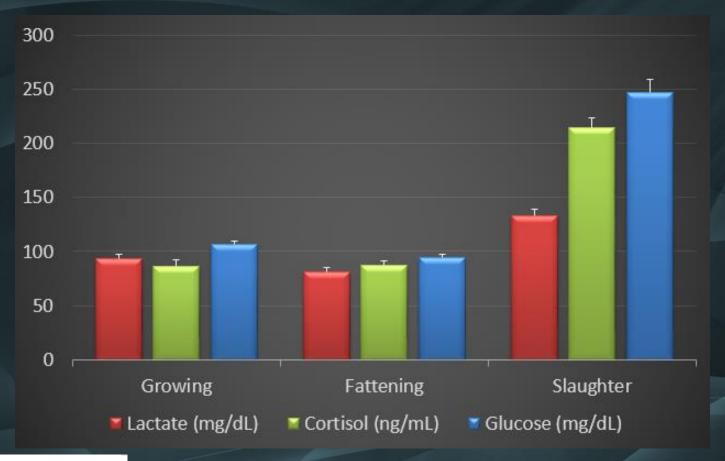

MATERIAL & METHODS


Slaughter at 125 days:

Carcass, Dressing-%, Ham, shoulder, Loin yield, meat quality

Cortisol: hormone released by activation of HPA-axis

Activates glycogenolysis and gluconeogénesis


Glucose: Cortisol increases substrate levels of glucose to increase energy availability (less precise indicator of stress tan cortisol)

Glucose glycolysis (pyruvate) citric acid cycle (mitocondrial matrix)

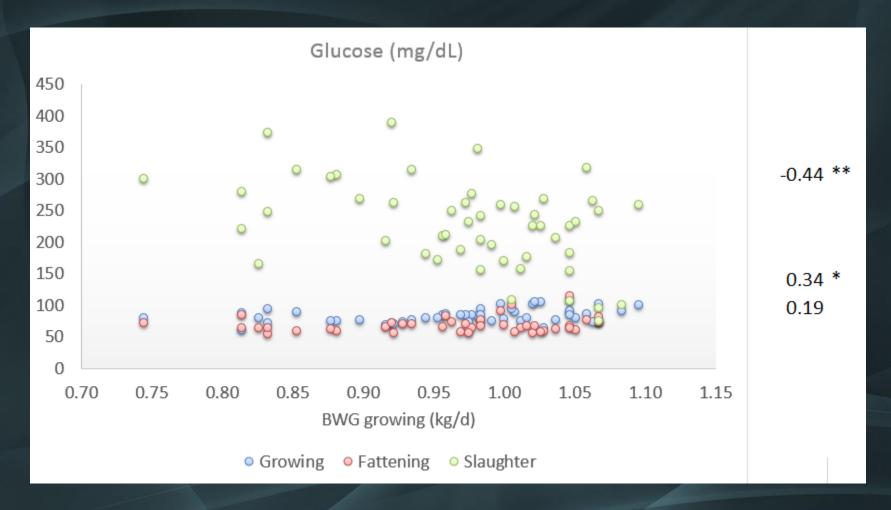
Lactate: Anaerobic metabolism: pyruvate 🕝 lactate

Acute stress: increase in cortisol, glucose, and lactate

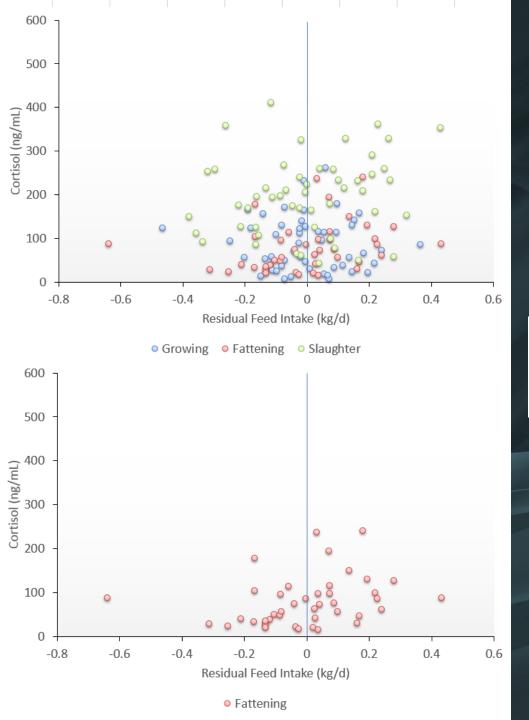
But at slaughter: exhaustion of glycolytic stores

Cortisol

slaughter growing 0.25 † fattening 0.33 *

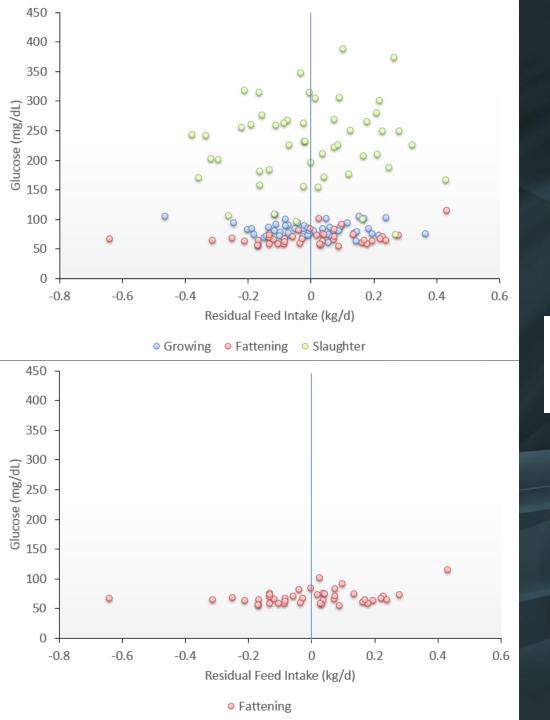

Growing Fattening Slaughter
Glucose - Lactate 0.23 † 0.53 *** 0.13

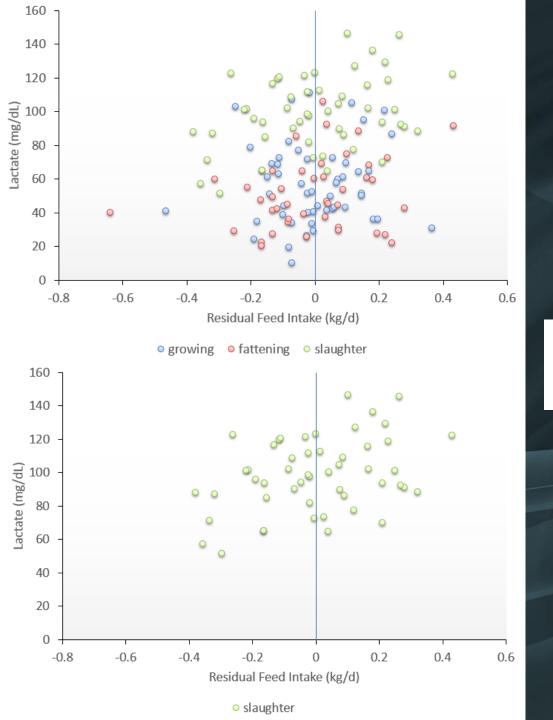
Slaughter Glucose Lactate
Cortisol -0.35 * 0.48 ***


Repeatable response

glucose û = lactate û

Exhaustion of glycolytic stores


Faster growth = higher stress response & faster depletion of glycolytic stores at slaughter


		Glucose	Lactate	Cortisol
	Growing	-0.13	0.07	-0.05
RFI	Fattening	0.32 *	0.25	0.29 †
	Finishing	0.05	0.37 **	0.19


û Cortisol = û RFI = ↓ Feed Efficiency

		Glucose	Lactate	Cortisol
	Growing	-0.13	0.07	-0.05
RFI	Fattening	0.32 *	0.25	0.29 †
	Finishing	0.05	0.37 **	0.19

û Glucose = û RFI = ⇩ Feed Efficiency

		Glucose	Lactate	Cortisol
	Growing	-0.13	0.07	-0.05
RFI	Fattening	0.32*	0.25	0.29 †
	Finishing	0.05	0.37 **	0.19

û Lactate = û RFI = ⇩ Feed Efficiency

Conclusions

- Repeatable response cortisol
- Positive relationship between glucose and lactate
- Slaughter: increase in glucose, lactate, cortisol
- Slaughter: stress û = cortisol û, lactate û, glucose ↓
 - Exhaustion of glycogenic stores
- Faster initial growth: glucose = ① (Growth), ℚ (Slaughter)
- More efficient animals (RFI-):

Glucose ♥ (fattening), Cortisol ♥ & Lactate ♥ (Slaughter)

IMPROVED FEED EFFICIENCY

Maintenance

Activity

Welfare (stress)

Health (immune)

Reduced ability to respond to stress, or

Reduced stress response

E

ACKNOWLEDGEMENTS

ERA-NET SusAn 35: SusPig www.suspig-era.net Sustainability of Pig production through improved feed efficiency - 2017–2020

AGL2016-75942-R: IBERFIRE (Iberian, RFI, Reproduction) Molecular Characterization of feed efficiency and reproduction traits in Iberian pigs - 2017–2021

ACKNOWLEDGEMENTS

Luis Gomez Raya, Luis Alberto Garcia Cortés, M. Carmen Rodriguez, Luis Silió, Emilio Gómez Izquierdo, Eduardo de Mercado Fabián García Ruiz, Rita Benítez Yañez, Yolanda Núñez Moreno

ERA-NET SusAn: SusPig www.suspig-era.net

P1	Dr Wendy Rauw Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)	P 4	Prof Margareth Øverland Norges miljø- og biovitenskapelige universitet (NMBU)	P 7	Dr Susanne Hermesch University of New England (UNE)
P 2	Prof Lotta Rydhmer Swedish University of Agricultural Sciences (SLU)	P 5	Dr Hélène Gilbert Institut national de la recherche agronomique (INRA)	P8	Dr Alban Bouquet Institut du Porc (IFIP)
0.3	Prof Ilias Kyriazakis	P 6	Prof Jack Dekkers Iowa State University (ISU)	P 9	Dr Emilio Gómez Izquierdo Instituto Tecnológico Agrario (ITACYL)
Newcastle University (UNEW)					

