69th Annual Meeting of the European Federation of Animal Science Dubrovnik, Croatia, 27th to 31st August 2018

Relationship between resource use, efficiency and sustainability of sheep-crop farming systems

Tamara Rodríguez-Ortega, Alberto Bernués, Ana Mª Olaizola

Introduction

• "Agriculture is a primary activity by which human societies channel renewable energy flows into products that support social welfare" (Rydberg and Haden, 2006).

EMERGY: Energy of the same form (solar emjoules) invested to make a product or service considering the quality of the different energies involved.

Objective: To evaluate the emergy flowing in representative Mediterranean sheep and sheep-crop farming systems with diverse degrees of specialization, integration and intensification of production.

Material and methods: data collection

10 sheep and mixed sheep-crop farms in Aragón (Northeast Spain), from previous farm typologies

- Initial survey (2014):
 - family structure and labor
 - agricultural and pasture area
 - flock dynamics
 - products and destination of production
 - farm equipment

- Monitoring during agronomic year 2014-2015, every 2-3 months with forms:
 - crop management (inputs, doses, time of operation, fuel consumption, harvests)
 - animal feeding (grazing calendar & indoor rations) per batch
 - reproduction management
 - self-consumptions and exchanged products
 - work for third parties, hired labor and machines

Material and methods: emergy analysis

1. Emergy diagram:

3. Emergy indicators:

2. Emergy tables:

	Amount (unit/yr)	Т	ransformity (sej/unit)	y S	Solar emergy (sej/yr)
Local renewable resources	6.75 E13 J/yr	X	2.59 E04 sej/J	=	1.75 E18 sej/yr
Local non-renewable resources	7.69 E11 J/yr	X	1.24 E05 sej/J	=	9.53 E16 sej/yr
Purchased inputs		x		=	
Labor & services		x		=	🗸
Yields	3.24 E04 kg/yr		9.23 E13 sej/kg		Σ = 2.99 E18 sej/yr

- Sustainability = Self-sufficiency Environmental stress

- Self-sufficiency = —

+

- Environmental stress =

Results: diversity of farming systems

	Specialized sheep- mountain pastures (S-MP) system	Fully-integrated mixed sheep-permanent crops (S-PC) system	Partially-integrated mixed sheep-arable crops (S-AC) system
Crop harvest (kg DM)	8.922	68.738	373.592
Self-consumption (%)	100	100	35
Sales (%)	0	0	65
Feeding strategy (% of year): - ☐ Grazing Indoor -> Grazed pastures (% of yea	100 93 75 50 25 7 0 2,3	100 78 75 50 22 25 0 11,5 ^{2,5}	100 75 75 50 25 25 0 1,2
Semi-natural vegetaForagesStubbles	ation 29,2 68,5	86	64,8 34

Results: Input composition of emergy flow (emergy/year)

Results: Emergy embeded on agricultural products

Solar emjouls (sej) per J of product:

Results: Emergy footprint of lamb meat, but what about composition?

Emergy per kg of lamb meat sold (live weight):

Results: Trade-offs on production models

Specialized sheep-mountain pastures (S-MP) system Fully-integrated mixed sheep-permanent crops (S-PC) system Partially-integrated mixed sheep-arable crops (S-AC) system

Conclusions

1. The **production system** determines the **origin and quantity of resources** that are incorporated in agricultural products.

2. Intensification (higher inputs of non-renewable resources allowing more production in smaller spaces and faster times), while yielding more product per unit of emergy input (i.e. higher efficiency), also results in products having lower self-sufficiency and higher environmental stress, thus contributing to lower sustainability.

69th Annual Meeting of the European Federation of Animal Science Dubrovnik, Croatia, 27th to 31st August 2018

Thanks for your attention

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Does intensification result in higher efficiency and sustainability? An emergy analysis of Mediterranean sheep-crop farming systems

T. Rodríguez-Ortega ^{a, c, *}, A. Bernués ^{a, c}, A.M. Olaizola ^{b, c}, M.T. Brown ^d

^a Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain

^b Departamento de Ciencias Agrarias y del Medio Natural, Universidad de Zaragoza, Zaragoza, Spain

^c Instituto Agroalimentario de Aragón– IA2 - (CITA-Universidad de Zaragoza), Zaragoza, Spain

^d Department of Environmental Engineering Sciences, University of Florida, Gainesville, USA

Material and methods: emergy analysis

