Producing lambs while limiting concentrates in various pedoclimatic contexts: which performances?

M.Benoit¹, B.Dumont, R.Sabatier, J.Lasseur (INRA) Ph.Creighton (Teagasc)

¹ INRA UMRH Clermont-Ferrand, France

Background

Decrease in European sheep production

- Profitability / Production cost, in particular feed and equipments
- Workload

Global stakes

- Livestock contribution to Climate change
- Energy consumption
- Feed-food competition

Great variability

- In farm performances (technical and economic)
- Pedo-climat contexts
- Breeds

Aims

In a large diversity of context For optimized sheep farming systems (output/input)

- What strategies?
- What results? Technical, economic, environmental, feed-food
- What consequences?

Choice of 5 farming systems

Ewe productivity Concentrate use

: Major impact

1482 years- farms (1987-2016) - 118 farms (12 years in average)

Ewe productivity %

Simulation tool and performance indicators

OSTRAL (simulation tool)

- Standardisation
 - Economic situation (2015)
 - Adequation of equipments
- Extrapolation for Irel. System (60 → 420 ewes)
- Indicators calculation

[Technical indicators (flock perf.; feeding; ...]

- Feed/food competition
 (protein) (Ertl et al 2015, Wilkinson 2011...)
- Economics
 - Net Income /worker
 - Added value /worker
 - Net Income/assets
- Environment
 - N balance
 - Gross and Net GHG emissions/kg carc (LCA)
 - MJ/kg carc (LCA)
- Market adequacy
 - Lambs selling Regularity
 - Lambs Conformation

Main characteristics and performances

	Irel	Graz	3x2	OF	DT
No ewe (>6 mths)	420	541	470	405	2105
Stocking rate (ewe/ha Fodder Area)	11.4	6.6	8.7	4.4	0.5

Ewe productivity (+6mths) (%)	154	133	166	132	82
Ewe mortality (%)	8.3	3.3	5.8	4.8	18.9
Concentrates (kg.kg carc ⁻¹)	1.22	1.55	5.24	3.41	0.00
Fodder self-sufficiency (%)	95	94	78	88	100

Added value (€.W ⁻¹)	21400 (44000)	31700	19800	22500	31900
Gross GHG emissions (EqCO2.kg carc-1)	21.7	18.3	22.5	24.8	28.6
Net GHG emissions (EqCO2.kg carc-1)	19.2	13.7	16.6	8.5	-130.0
Total MJ Non Renew. Energy (MJ.kg carc ⁻¹)	50.6	31.4	50.9	47.6	22.7
Effic. conversion of edible proteins (%)	158	125	33	51	∞

Synthesis of overall performance

Discussion

- Fodder self-sufficiency
 - → high seasonality of reprod. & fattening
- Harsh environment and resources
 - → rustic breed → low lamb conformation

Low market compliance

- Cross organisation between territories? (regularity)
- Consumers education? ...in relation with labelling, certification and specificities
- Specific markets/consumers (ex: DT lambs for Muslims)

Conclusion

Very high use of fodder resources
// Farm sustainability

Sheep industry standards

Other services and impacts must be studied Socio-economics, patrimonial aspects, nutritional quality, biodiversity, landscape

→ Use of Conceptual framework (Dumont et al, Animal 2018)

Thank your for your attention

5 contrasting farming systems 2/2

Irel	Graz	3x2	OF	DT
Plain	Plain	Mountain	Mountain	Mountain /pastoral
Oceanic climate	Temperate	Continental	Continental	Mediterranean
Grass-based	Grass-based	Intens. Repro. Syst	Grass-based	Double transhum.
Intensive pastures	system	High ewe product	Organic farming	$0 \rightarrow 2500$ m alt.
(experimental device)				Harsh conditions
One lambing period	One lambing	3 lambing period	2/3 spring lambings	Two lambing periods
(end winter)	period; grass-	Lambs indoors	(grass-fattened lambs);	(March - October)
High meat and N/ha	fattened lambs		1/3 in autumn	No concentrate
	No N fertilis.			

2015 42 farms (Inra)

Main characteristics and performances

	Irel	Graz	3x2	OF	DT
Total Agricultural Area (ha)	36.8	81.9	53.9	91.9	4463
Stocking rate (ewe/ha Fodder Area)	11.4	6.6	8.7	4.4	0.5
No ewe (>6 mths)	420	541	470	405	2105
Work productivity (eq.Livestock Unit.W ⁻¹)	66.3	54.6	46.0	59.7	72.5

Average
(High lev.)
110
5.3
556
61.5

Ewe productivity (+6mths) (%)	154	133	166	132	82
Ewe mortality (%)	8.3	3.3	5.8	4.8	18.9
Concentrates (kg.kg carc ⁻¹)	1.22	1.55	5.24	3.41	0.00
Fodder self-sufficiency (%)	95	94	78	88	100

126
6.3
7.5
71

Added value (€.W ⁻¹)	21400 (44000)	31700	19800	22500	31900
Gross GHG emissions (EqCO2.kg carc-1)	21.7	18.3	22.5	24.8	28.6
Net GHG emissions (EqCO2.kg carc-1)	19.2	13.7	16.6	8.5	-130.0
Total MJ Non Renew. Energy (MJ.kg carc ⁻¹)	50.6	31.4	50.9	47.6	22.7
Effic. conversion of edible proteins (%)	158	125	33	51	000

19900
30.1
20.1
71
30 ??

Stakes representation

