Efficient computational strategies for multivariate single-step SNPBLUP

Jeremie Vandenplas, Herwin Eding, Mario P.L. Calus
August 29, 2018

ㅁ
WAGENINGEN

Breed4Food is dedicated to be the leading research consortium in animal breeding, genetics and genomics enabling the Breed4Food partners to breed better products to benefit society's needs.

GENETICS

Single-step genomic evaluations

- Prediction of genomic breeding values
- Genotyped and non-genotyped animals
- Potentially high computational costs
- Most software not suitable for single-step SNPBLUP
- Usual iterative solver
- Preconditioned Conjugate Gradient method
- Main cost
- Coefficient matrix * vector

Aim

Investigate the main computational costs and

 implement solutionsfor efficiently solving
a multivariate single-step SNPBLUP
with the PCG method

ssSNPBLUP - model

- Hybrid model
- Non-genotyped animals : breeding value model
- Genotyped animals : SNP model

$$
\begin{gathered}
\mathbf{y}=\mathbf{X b}+\left[\begin{array}{ccc}
\mathbf{Z}_{n} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{Z}_{g} & \mathbf{Z}_{g} \mathbf{M}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{n} \\
\mathbf{a}_{g} \\
\mathbf{g}
\end{array}\right]+\mathbf{e} \\
\mathbf{u}_{g}=\mathbf{a}_{g}+\mathbf{M g}
\end{gathered}
$$

$\mathbf{u}_{n}, \mathbf{u}_{g}$: aggregate GEBVs for (non-)genotyped animals
$\mathbf{a}_{g} \quad$: residual polygenic effects for genotyped animals
g : SNP effects
M : SNP genotypes

PCG in animal breeding

- Main computational cost for one iteration
- Coefficient matrix (C) * vector (v)
- Usually performed in two parts + matrix-free approach

$$
\begin{gathered}
\mathbf{C} * \mathbf{v}=\mathbf{L} * \mathbf{v}+\mathbf{R} * \mathbf{v} \\
{\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{Z}+\mathbf{G}^{-1}
\end{array}\right] * \mathbf{v}=\left[\begin{array}{ll}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{Z}
\end{array}\right] * \mathbf{v}+\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{G}^{-1}
\end{array}\right] * \mathbf{v}} \\
\\
\text { Least Squares part } \begin{array}{c}
\text { Random } \\
\text { of } \mathbf{C}
\end{array}
\end{gathered}
$$

ssSNPBLUP - potential costs

- "Traditional" matrix-free approach

$$
\mathbf{C} * \mathbf{v}=\mathbf{L} * \mathbf{v}+\mathbf{R} * \mathbf{v}
$$

2 multiplications with M

$\rightarrow 4$ multiplications with \mathbf{M}
\rightarrow High memory/IO requirement for \mathbf{M}

- 1,000,000 50K genotypes (dp): 373 GB
\rightarrow Difficult to parallelize (e.g., inverted pedigree relationship (sub-)matrices $\mathbf{A}^{x x}$)

ssSNPBLUP - solutions

1. Potential cost: 4 multiplications with M
\rightarrow Solution: Rearrangement of the equations

\rightarrow Computation of $\mathbf{C} * \mathbf{v}$ in 4 steps
\rightarrow Only $\mathbf{2}$ multiplications with \mathbf{M}

ssSNPBLUP - solutions

2. Potential cost: high memory/IO for \mathbf{M}
\rightarrow Solution: Compressed genotypes (Plink bed format)

SNP genotype	Homozygous first allele	Heterozygous	Homozygous second allele	Missing
Decimal	0	1	2	3
2-bit	00	01	11	10

$$
3210 \Leftrightarrow 00101101 \Leftrightarrow 45
$$

4 SNP genotypes 4-32 bytes

1-byte integer

ssSNPBLUP - solutions

50,000 SNPs

$\rightarrow-$ Compressed format \rightarrow-1-byte integer \rightarrow-Single precision \rightarrow Double precision

WAGENINGEN
UNIVERSITY \& RESEARCH

ssSNPBLUP - solutions

3. Potential cost: difficult to parallelize operations with $\mathbf{A}^{x x}$
\rightarrow Solution: hold $\mathrm{A}^{x x}$ in memory

- Optimized and parallelized libraries
- E.g., Sparse BLAS, Pardiso

ssSNPBLUP - solutions

4. Potential cost: "On-the-fly imputation"
\rightarrow Solution: New equation

$$
\begin{aligned}
\mathbf{Q} \mathbf{v} & =\left(\mathbf{A}^{g g}-\mathbf{A}_{g g}^{-1}\right) \mathbf{v} \\
& =\left(\mathbf{A}^{g n}\left(\mathbf{A}^{n n}\right)^{-1} \mathbf{A}^{n g}\right) \mathbf{v} \\
& =\left(\mathbf{A}_{a n c}^{g n}\left(\mathbf{A}_{a n c}^{n n}\right)^{-1} \mathbf{A}_{a n c}^{n g}+\Delta\right) \mathbf{v}
\end{aligned}
$$

Dense $\mathbf{A}_{g g}^{-1}$
Large and sparse $\mathbf{A}^{n n}$ ($\sim \operatorname{size}($ pedigree) $)$
Small and sparse $\mathbf{A}_{a n c}^{n n}$
$\mathrm{A}_{\text {anc }}^{n n}$: size(ancestors of genotyped animals)
Δ : sparse + depends only on non-genotyped progeny of genotyped animals

Example - data \& hard/software

- CRV 4-trait evaluation
- Temperament and milking speed
- Pedigree 6,130,519
- Phenotypes 3,882,772
- Genotypes 90,963
- SNPs 37,994
- Hardware: 528 GB RAM / 32 CPUs (only 5 CPUs used)
- Fortran + OpenMP program
- Intel MKL library (BLAS, sparse BLAS, PARDISO)

Example - Time and memory

ssSNPBLUP: limited amount of memory and time / iteration

- Max. RAM
- Average time / iteration 7.7 GB
- Time / imputation on-the-fly
3.6 s
- Time / 2 multiplications with M
- \# iterations
ssGBLUP + APY (13K core animals)
- Max. RAM
- Average time / iteration
14.2 GB
2.5 s
- \# iterations

1258
WAGENINGEN
UNIVERSITY \& RESEARCH

Conclusions

- Multi-trait ssSNPBLUP
- Feasible on current hardware
- With limited amounts of memory and time
- Even with >1,000,000 genotypes
- Jan ten Napel, EAAP 2018, session 12
- Under study
- More complex models
- Convergence issues

Thank you!

