

ORDINATION METHODS TO BUILD MICROBIOTA SIMILARITY MATRICES FOR COMPLEX TRAITS PREDICTION

Alejandro Saborío-Montero Oscar González-Recio

EAAP 2018

Objectives 🔪 Mat

There are evidences of:

• Microbiome influencing complex traits in ruminants

Animal (2014), 8:11, pp 1816–1825 © The Animal Consortium 2014 doi:10.1017/S1751731114001852

Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach¹

J. Guyader^{1,2}, M. Eugène^{1,2}, P. Nozière^{1,2†}, D. P. Morgavi^{1,2}, M. Doreau^{1,2} and C. Martin^{1,2}

Metatranscriptomic Profiling Reveals Linkages between the Active Rumen Microbiome and Feed Efficiency in Beef Cattle

Fuyong Li, Le Luo Guan

Partial control of host genotype over microbiome composition

J. Dairy Sci. 101:1–8 https://doi.org/10.3168/jds.2017-13179 © American Dairy Science Association[®], 2018.

Short communication: Signs of host genetic regulation in the microbiome composition in 2 dairy breeds: Holstein and Brown Swiss

O. Gonzalez-Recio,*†¹ I. Zubiria,‡ A. García-Rodríguez,‡ A. Hurtado,§ and R. Atxaerandio‡

RESEARCH ARTICLE Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance Rainer Rostes¹, Richard J. Dewturst¹, Carol-Anne Duthis¹, John A. Rooks¹, Rainer Rostes¹, John W. Ross¹, Jamey J. Hyslog¹, Anthony Waterhouse¹, Tom C. Freeman³, Mick Watson⁴, R. John Wallace²

These evidences pose the hypothesis of microbiome as a source of information to predict complex traits

Complex traits as feed efficiency and methane emissions could be included into genetic evaluations taking into account a microbiome effect to select highly profitable and sustainable animals

ited under the terms of the ted re-use. distribution

OPEN & ACCESS Freely available online		Animal (2015), 9:9, pp 1431–1440 © The Animal Consortium 2015. This is an Open Access article, distribution Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestrict and corrective provided the optical work is reproducible to compare the provided the optical sector of the provided the optical work is reproducible.
		doi:10.1017/S1751731115000968
Metagenomic Predictions: From Microbiome	to Complex	
Health and Environmental Phenotypes in Hu	mans and	Animal board invited review: genetic possib
riculti una Environmentar i nenotypes in ria	inans and	antaria mathema amissiana from ruminanta
Cattle		enteric methane emissions from ruminants
Elizabeth M. Ross ^{1,2,3} *, Peter J. Moate ⁴ , Leah C. Marett ⁴ , Ben G. Cocks ^{1,2,3} , Ben J. H	layes ^{1,2,3}	N. K. Pickering ^{1a} , V. H. Oddy ² , J. Basarab ³ , K. Cammack ⁴ , B.

bilities to reduce

N. K. Pickering^{1a}, V. H. Oddy², J. Basarab³, K. Cammack⁴, B. Hayes^{5,6,7}, R. S. Hegarty⁸, J. Lassen⁹, J. C. McEwan¹, S. Miller^{10,11b}, C. S. Pinares-Patiño^{12c} and Y. de Haas^{13†}

Results

Conclusions

- Single given OTU vs whole microbiota in statistical analysis.
- Microbiota relationship matrices (MRM) consider microbiota as a whole; However there are differences in the methods of ordination of matrices leading to differences in MRM outputs.
- The comparison of MRM has not been evaluated previously in an animal breeding context.
- We propose to compare the MRM obtained from different ordination methods to disentangle which are the most appropriate to be included in statistical models analyzing genotype and microbiome to predict feed efficiency.

- Develop and test some statistical approaches to evaluate feed efficiency in dairy cows including host genotype and microbiome simultaneously.
- Compare ordination methods to build MRM using simulation
- Estimate the proportion of phenotypic variance for feed efficiency explained by microbiome variance (microbiability), considering the interaction between microbiota and host genotype

Objectives M

Mat. y Methods

Results

Simulated data

- 1000 Holstein cows and 92 OTUs
- Microbiota effect (co(variances) matrix from real data)
- Genetic effect (assigning effects to simulated QTL)
- Phenotype

Real data

- 70 Holstein cows
- Microbiota
 - V3-V4 hypervariable regions 16S rRNA (92 OTU)
- Genotype
 - 54609 SNPs
 - Phenotype
 - Parity, DMI, milk yield, fat, protein body weight, feed efficiency.

Objectives

Mat. y Methods

Genomic + Microbiota

Residual Microbiota effect Incidence matrix (microbiota) Additive genetic effect Incidence matrix (genotype) Population mean An nx1 vector of ones

- $\cup \sim N(0, GRM\sigma_u^2)$,
- m ~N (0, **MRM** σ_m^2) y
- e ~N($0, \sigma_e^2$) •

Bayesian resolution approach BGLR package in R environment Effects were included as RKHS

🔪 Mat. y N

Mat. y Methods

Genomic + Microbiota + Genomic*Microbiota

OPEN CACCESS Freely available online

Mat. y Methods

Reference MRM

OTU

Results

		X ₁₁	x ₁₂	X ₁₃	•	•	•	X _{ij}
Complex		x ₂₁	x ₂₂	x ₂₃	•	•	•	x _{ij}
ans and	ole	x ₃₁	x ₃₂	x 33	•		•	x _{ij}
es ^{1,2,3}	μ							
Research Centre, Bundoora, rimary Industries, Ellinbank,	ar	•	•	•	•	•	•	х _{іј}
1	S							
d as an $n \times$		•	•	•	•	•	•	Х _{іј}
rmed and								
imples and		•	•	•	•	•	•	Х _{іј}
e described		V	V	V	v	V	V	v
		^ij	^ij	^ij	^ij	^ ij	^ij	^ij

Metagenomic Predictions: From Microbiome to Complex Health and Environmental Phenotypes in Humans and Cattle

Elizabeth M. Ross^{1,2,3}*, Peter J. Moate⁴, Leah C. Marett⁴, Ben G. Cocks^{1,2,3}, Ben J. Hayes^{1,2,3}

1 Biosciences Research Division, Department of Environment and Primary Industries, Bundoora, Victoria, Australia, 2 Dairy Futures Cooperative Research Centre, Bundoora, Victoria, Australia, 3 La Trobe University, Bundoora, Victoria, Australia, 4 Future Farming Systems Division, Department of Environment and Primary Industries, Ellinbank, Victoria, Australia

Metagenomic profiles for a group of samples are defined as an $n \times m$ matrix **X** with elements x_{ij} , the log transformed and standardised count for sample *i* for contig *j*, with *n* samples and *m* contigs. The relationship between samples can then be described by a matrix $\mathbf{G} = \mathbf{XX'}/m$.

Each element (x_{ij}) from the X matrix is the log-transformed and standardized count for relative abundance for sample *i* in OTU *j*

Ordination methods used

- Metric Multidimensional Scaling (MDS/PCoA)
- Detrended Correspondence Analysis (DCA)
- Non-Metric Multidimensional Scaling (NMDS)
- Redundancy Analysis (RDA)
- Constrained Correspondence Analysis (CCA)

Table	1.	Relevant	metrics,	procedures	and	miscellaneous	characteristics	regarding
		ordination	methods	1.				

Trait	MDS	DCA	NMDS	RDA	CCA
Distance	Euclidean	Chi Square	Bray-Curtis	Euclidean	Chi Square
Arch effect correction	No	Yes	No	No	No
Canonical analysis	No	No	No	Yes	Yes
Computation time	Low	Low	High	Low	Low

¹MDS = Multidimensional Scaling, DCA = Detrended Correspondence Analysis, NMDS = Non-Metric Multidimensional Scaling, RDA = Redundancy Analysis, CCA = Constrained Correspondence Analysis.

Association between diagonal elements

Association between diagonal elements

Association between non-diagonal elements

Association between non-diagonal elements

Accuracy (EMV vs TMV)

Method of Ordination

Method of Ordination

Background

Mat. y Methods

Results

$\mathbf{y} = 1'\mathbf{\mu} + \mathbf{Z}\mathbf{u} + \mathbf{W}\mathbf{m} + \mathbf{e}$

Table 7. Heritability, microbiability and correlations between GEBV and phenotype; and between EMV and phenotype for feed efficiency, estimated using a model independently including genomic and microbiome effects according to method of ordination for microbiota using real data from 70 cows¹.

Parameters	Ross	MDS	DCA	NMDS	RDA	CCA
$\mathbf{y} = 1'\boldsymbol{\mu} + \mathbf{Z}\mathbf{u} + \mathbf{W}\mathbf{m} + \mathbf{e}$						
Heritability	0.313	0.304	0.305	0.293	0.333	0.337
Microbiability	0.230	0.198	0.263	0.240	0.346	0.318
Correlation GEBV vs Phenotype	0.942	0.960	0.926	0.955	0.956	0.956
Correlation EMV vs Phenotype	0.538	0.698	0.368	0.218	0.987	0.993

¹GEBV= Genomic Estimated Breeding Values, EMV= Estimated Microbiome Values, Ross = ordination method of Ross et al. 2013, MDS = Multidimensional Scaling, DCA = Detrended Correspondence Analysis, NMDS = Non-Metric Multidimensional Scaling, RDA = Redundancy Analysis, CCA = Constrained Correspondence Analysis.

Mat. y Methods

Results

$\mathbf{y} = 1'\mathbf{\mu} + \mathbf{Z}\mathbf{u} + \mathbf{W}\mathbf{m} + \mathbf{T}\mathbf{u}x\mathbf{m} + \mathbf{e}$

Table 9. Heritability, microbiability and correlations between GEBV and phenotype; and between EMV and phenotype for feed efficiency, estimated using a model with interaction between genomic and microbiome effects according to method of ordination for microbiota using real data from 70 cows¹.

Parameters	Ross	MDS	DCA	NMDS	RDA	CCA
$\mathbf{y} = 1'\boldsymbol{\mu} + \mathbf{Z}\mathbf{u} + \mathbf{W}\mathbf{m} + \mathbf{T}\mathbf{u}x\mathbf{m} + \mathbf{e}$						
Heritability	0.269	0.273	0.266	0.269	0.297	0.281
Microbiability	0.192	0.198	0.220	0.242	0.282	0.272
Correlation GEBV vs Phenotype	0.934	0.952	0.923	0.947	0.945	0.946
Correlation EMV vs Phenotype	0.525	0.700	0.368	0.214	0.989	0.996

¹GEBV= Genomic estimated breeding values, EMV= Estimated microbiome values, Ross = ordination method of Ross et al. 2013, MDS = Multidimensional scaling, DCA = Detrended correspondence analysis, NMDS = Non-metric multidimensional scaling, RDA = Redundancy analysis, CCA = Constrained correspondence analysis.

Statistical model comparison

Table 10.	Information criteria estimated for models with and without interaction between
	genetic and microbiome effect according to method of ordination for the
	microbiota relationship matrix for real data from 70 cows, a GBLUP model' is
	included as reference ¹ .

	Ross	MDS	DCA	NMDS	RDA	CCA	$\mathbf{y} = 1'\boldsymbol{\mu} + \mathbf{Z}\mathbf{u} + \mathbf{e}^*$
$\mathbf{y} = 1'\boldsymbol{\mu} + \mathbf{Z}\mathbf{u} + \mathbf{W}\mathbf{m} + \mathbf{U}\mathbf{u} + \mathbf{W}\mathbf{w} + \mathbf$	e						
LogLikAtPostMean	-84.2	-84.9	-84.0	-85.4	-84.1	-84.2	-85.1
PostMeanLogLik	-88.8	-89.8	-88.0	-88.9	-89.1	-89.2	-88.7
pD	9.3	9.8	7.9	7.1	10.1	10.1	7.1
DIC	187.0	189.3	183.9	185.0	188.3	188.5	184.4
$y = 1'\mu + Zu + Wm +$	Tuxm	+ e					
LogLikAtPostMean	-84.1	-84.2	-83.9	-85.4	-83.6	-83.7	-85.1
PostMeanLogLik	-89.5	-90.0	-88.8	-89.6	-89.5	-89.7	-88.7
pD	10.9	11.6	9.8	8.3	11.9	11.9	7.1
DIC	190.0	191.7	187.5	187.5	191.0	191.3	184.4

/
Ross = ordination method of Ross et al. 2013. MDS = Multidimensional scaling. DCA = Detrended
correspondence analysis. NMDS = Non-metric multidimensional scaling. RDA = Redundancy analysis.
CCA = Constrained correspondence analysis. logLikAtPostMean = log-likelihood evaluated at posterior
mean. pD = estimated effective number of parameters. PostMeanLogLik = posterior mean of the Log-
Likelihood. DIC = deviance information criteria. $y = 1'\mu + Zu + e = GBLUP$ model accounting for the
genomic effect, not including microbiome effect.

Model	DIC
$y = 1'\mu + Zu + e$	184.4
$y = 1'\mu + Zu + Wm + e$	183.9 - 189.3
$\mathbf{y} = 1'\boldsymbol{\mu} + \mathbf{Z}\mathbf{u} + \mathbf{W}\mathbf{m} + \mathbf{T}\mathbf{u}x\mathbf{m} + \mathbf{e}$	187.5 - 191.7

Background Justification Objectives Mat. y Methods Results Conclusions

- The obtained MRM using MDS, RDA and CCA were as suitable as, or even better than the benchmark matrix in terms of the estimation of variance components, heritability and microbiability using simulation analysis.
- The genomic breeding values were accurately predicted when a microbiome effect was accounted for; the benchmark matrix and the canonical ordination methods of CCA and RDA showed higher accuracies than MDS, DCA and NMDS.
- It is possible to include a whole microbiota effect in the statistical analysis of feed efficiency.
- From the deviance information criteria, there is not enough evidence to reject any of the models that include microbiota information.

Mat. y Methods

Results

Simulation of microbiota

Objectives 🔪

Mat. y Methods

Simulation of microbiota effect

• 50 out of the 92 OTUs were randomly selected. An effect (β_j) was sampled from a normal distribution (N ~ (0, 1)) and assigned to each of the 50 selected OTUs.

• The microbiota effect (*m*) for each animal was simulated as follow:

$$m_i = \sum_j \beta_j \times OTU_{ij}$$

• Where β_j is the effect of OTU_j and OTU_{ij} is the relative abundance of OTU j in animal i. The resulting $\{m_i\}$ was scaled to have a variance of σ_m^2

🔪 🦷 Mat. y

Results

Simulation of genotype effect

Objectives

- A dataframe with 1000 genotyped Holstein cows with allelic variants for 9244 SNPs was used
- The additive genetic effects were determined by 1000 QTL which were simulated from a normal distribution (~N (0, 1))
- The true breeding values (**u**) were calculated by adding all QTL effects which were subsequently scaled to a realized variance of σ_u^2

Mat. y Methods

Simulation of phenotype

- Phenotypes were simulated assigning a residual variance to obtain a heritability of 0,3 and a microbiability of 0,5
- Simulated for an independent effect model and for an interaction effect model as follow:

 $y_i = \mu + u_i + m_i + e_i$ $y_i = \mu + u_i + m_i + u_i \times m_i + e_i$

• Where μ is the population mean, \boldsymbol{v}_i is the genomic effect, \boldsymbol{m}_i is the microbiota effect, $u_i \times m_i$ is the genomic-microbiota interaction effect and e_i is the residual.