

Modelling of grouped recorded data for different population structures in pig breeding

Mahmoud Shirali¹, Bjarne Nielsen², Tage Ostersen², Ole Christensen¹, Per Madsen¹, Guosheng Su¹, Just Jensen¹

¹Center for Quantitative Genetics & Genomics, Aarhus University, Denmark ²SEGES, Pig Research Centre, Denmark

Objective: To investigate the effect of population structure in the data on grouped analysis:

- Model group records with varying group sizes
- Considering multiple random effects
- Asses genetic parameter and breeding values

Develop methodology based on analysing simulated data
 Applying the method to real data

Modelling pooled data with varying group size and different random effects

•Individual record:

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}_{\mathbf{l}}\mathbf{l} + \mathbf{Z}_{\mathbf{c}}\mathbf{c} + \mathbf{Z}_{\mathbf{a}}\mathbf{a} + \mathbf{e}$$

• Group record:

$$\mathbf{T}\mathbf{y} = \mathbf{T}(\mathbf{X}\mathbf{b} + \mathbf{Z}_{\mathbf{l}}\mathbf{l} + \mathbf{Z}_{\mathbf{c}}\mathbf{c} + \mathbf{Z}_{\mathbf{a}}\mathbf{a} + \mathbf{e})$$

$$\sigma_{a^{*}}^{2} = \mathbf{z}_{\mathbf{a}}^{*}\mathbf{A}\mathbf{z}_{\mathbf{a}}^{*'}\sigma_{a}^{2} = \sum_{j=1}^{n_{g}}\mathbf{A}_{jj}\sigma_{a}^{2} + n_{g}(n_{g} - 1)\mathbf{A}_{jj'}\sigma_{a}^{2}$$

$$\sigma_{l^{*}}^{2} = \mathbf{z}_{\mathbf{1}}^{*}\mathbf{z}_{\mathbf{1}}^{*'}\sigma_{l}^{2} = \sum_{k=1}^{N_{L}}n_{lk}^{2}\sigma_{l}^{2}$$

$$\sigma_{c^{*}}^{2} = \mathbf{z}_{c}^{*}\mathbf{z}_{c}^{*'}\sigma_{c}^{2} = n_{g}^{2}\sigma_{c}^{2}$$

$$\sigma_{e^{*}}^{2} = n_{g}\sigma_{e}^{2}$$

Su et al. 2018

Real data

Low within pen relationship (Case 1)

- 23824 animals for analysis in 709 sections in 15 years
- Majority 1 littermate per pen.
- 47868 animals in pedigree
- Group size : <u>8 to 14</u> pigs per pen

Large within pen relationship (Case 2)

- 100285 pigs with phenotype
- 112959 pigs with pedigree
- Group size : <u>6 to 15</u> pigs per pen

Simulation of data

- Pedigree & data structure from low and large within pen relationship data are used
- Breeding values $a_i = \frac{1}{2}a_s + \frac{1}{2}a_d + m_i$
- Mendelian sampling term has expected value of 0 and variance of var(m) = $\frac{1}{2} \left[1 - \frac{(F_s + F_d)}{2} \right] \sigma_A^2$
- No selection
- Taking into account inbreeding
- 10 replicates

	σ_a^2	σ_c^2	σ_l^2	σ_e^2	h ²
simulated	300	70	40	490	0.33

Simulation: genetic parameter estimation

y = Xb + Za + Wc + Sl + e $y^* = X^*b + Z^*a + W^*c + S^*l + e^*$

Scenario	Analysis	σ_a^2	σ_c^2	σ_l^2	σ_e^2
	Simulated	300	70	40	490
Case 1	Individual	298 (18)	71 (5)	44 (11)	490 (13)
	Pooled	241 (60)	70 (26)	76 (91)	495 (254)
Case 2	Individual	298 (15)	71 (2)	40 (3)	492 (6)
	Pooled	302 (43)	72 (7)	31 (16)	491 (75)

Simulation: accuracy of breeding value estimation

Scenario	Individual	Pooled
Case 1	0.67 (0.02)	0.34 (0.03)
Case 2	0.70 (0.01)	0.48 (0.02)

Real data analysis: low within pen

Modelling feed efficiency

 $y_{ij} = YHM_i + b_1SBW_j + b_2ADG_j + a_j + c_j + e_{ij}$

 $y_{ij}^{*} = YHM_{i}^{*} + b_{1}^{*}n_{j}^{*} + b_{2}^{*}SBW_{j}^{*} + b_{3}^{*}ADG_{j}^{*} + a_{k}^{*} + e_{ijk}^{*}$

Trait	σ_c^2	σ_a^2	σ_e^2	Total	h²
Individual RFI	6.6	16.7	73.2	96.5	0.17
Sum group RFI	-	18.8	93.0	111.8	0.17

Accuracy: low within relationship

Real data analysis: large within pen relationship

Modelling growth

 $y_{ijk} = YHM_i + SEX_j + a_k + c_k + l_k + e_{ijk}$

 $y_{ijkl}^* = YHM_i^* + SEX_j^* + b_1^*n_k^* + a_l^* + c_l^* + l_l^* + e_{ijkl}^*$

Trait	Analysis	σ_a^2	σ_c^2	σ_l^2	σ_e^2
ADG	Individual	2691 (113)	694 (18)	424 (19)	4219 (51)
	Pooled	2909 (370)	434 (88)	484 (74)	5661 (864)

The accuracy of breeding value estimation = 0.65

Conclusions

- Developed model for pooled data considers:
 - multiple fixed and random effects
 - varying group sizes
- Developed model can be used for genetic parameter estimation
 - With larger standard error
- A close genetic relationship within a pen is favourable for breeding value estimation
- Genetic parameter estimation with group records on feed intake and growth is feasible