Boosted regression trees to predict pneumonia, growth and meat percentage of slaughter pigs

August 29th, 2018 – EAAP 2018, Dubrovnik

Erwin Mollenhorst, Karel de Greef, Bart Ducro, Ina Hulsegge, Rita Hoving, Roel Veerkamp, Claudia Kamphuis

- Sow producing a litter of 10 20 piglets (1 2 kg)
- Weaning at 3.5 4 weeks (7 9 kg)
- Start finishing phase at ± 2 months (20 25 kg)
- Slaughtered at ± 5.5 months (110 130 kg)
 - Carcass weight 80 100 kg

Introduction

Variability in slaughter pigs

Session 29: Variability in the pig production chain Difference in growth -> multiple deliveries Abnormalities, e.g. pneumonia Deviating meat percentage

Data available

Historic slaughter data Production cycle data

Idea: adapt management based on early prediction

-> decreased costs or higher revenues

Goal

To predict deviant slaughter pigs based on routine data available at the onset of the growing-finishing phase

Dataset from VIC Sterksel

65,208 records of individual pigs Born between 2004 – 2016

Information on:

Offspring, litter Locations, transfer dates, weights Slaughterhouse data

Predicted variables

Binary traits (0/1) on individual pigs

Pneumonia (no/yes)

10% lowest growth rate (normal/low)

10% lowest meat percentage (normal/low)

Generalized boosted regression models

gbm package in R

Performance criteria

ROC curve

Area under ROC curve (AUC) Sensitivity at 90% specificity (SN_{SP90})

Validation

70% train, 30% test, 1 year validation

Final performance: weighted average of 4 years

Pneumonia 2013 - AUC

5 most important variables (relative influence)

Growth 2013 – AUC - sensitivity

5 most important variables (relative influence)

Growing-finishing section (17%)LocationPiglet section (12%)LocationWeight at start growing-finishing (10%)GrowthAge at start growing-finishing (10%)Pen/trait history

Average results 4 years

	Pneumonia			Growth			Meat perc.		
	Train	Test	Valid.	Train	Test	Valid.	Train	Test	Valid.
AUC	0.90	0.77	0.61	0.86	0.80	0.77	0.82	0.70	0.53
SN _{SP90}	0.67	0.39	0.15	0.61	0.47	0.44	0.51	0.32	0.11

Performance train > test > validation

Differences smallest for growth (least overfit)

AUC_{valid} for growth 0.77, fairly good

Sensitivity at 90% specificity, however, below 50%

Low prevalence

Practical implications for growth

		True	class		
		Pos	Neg		
Pred.	Pos				
class	Neg	56	810	866	
		100	900	1000	PPV = 100 / 1000 = 10%

Three times increase in positive predicted value

Useful when no costs (time/money) are involved,

e.g. at start fattening phase

Conclusions

No reasonable prediction pneumonia / low meat percentage

Better identifying pigs with low growth rate

First step towards early warning system

Acknowledgements

Swine Innovation Centre (VIC) Sterksel

Gisabeth Binnendijk

This project was part of KB-27-01-0013

