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Why another method to benchmark genetic evaluations?

• In genomic evaluations cross validation is the most used tool for benchmarking

• All golden standard have problems:

• Pre-corrected phenotypes may be not well corrected
• Daughter Yield Deviations are not always available or might be inaccurate  
• Some traits (like maternal effects) don’t have direct observation related to animals

• Need simple general tools for varied situations in animal breeding systems 

• Legarra & Reverter (2017) proposed a new method based on comparisons of EBV from
partial (old) data vs whole (old+new) data.  
• Does not require “true” breeding values
• Does not require pre-corrected phenotypes
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Method LR
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Method LR: Estimators.

Bias

𝜇𝑤𝑝 = ෞ𝑢𝑝 − ෞ𝑢𝑤 . Expected value of 0 in absence of bias. 

Slope of the regression EBVw on EBVp

𝑏𝑤,𝑝 =
𝑐𝑜𝑣(ෞ𝑢𝑝, ෞ𝑢𝑤)

𝑣𝑎𝑟( ෢𝑢𝑝)
. With a value of 1 in unbiased procedure.

Correlation between EBVp and EBVw. 
Direct estimator of relative increase of accuracy from partial to whole.

𝜌𝑝,𝑤 =
𝑐𝑜𝑣( ෞ𝑢𝑤, ෢𝑢𝑝)

𝑣𝑎𝑟(෣𝑢𝑤)𝑣𝑎𝑟( ෢𝑢𝑝)
. The expected value is 𝐸(𝜌𝑝,𝑤) ≈

𝑎𝑐𝑐𝑝

𝑎𝑐𝑐𝑤
. 
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Objective

Testing the estimators of bias, slope and accuracy using 
simulated selection schemes in several scenarios: 

1. The genetic evaluation model is the correct one.
2. The genetic evaluation model is wrong. 
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Simulation details 

Dairy sheep like scheme. 
Simulation was performed with QMSim software (version 1.10) 
(Sargolzaei & Schenkel, 2009).

Parameters used:
• h2 simulated: 0.05, 0.10, 0.25, 0.50
• 20 replicates for each h2

• Records only in females
• 10 generations
• Total animals in each replicate around 500,000
• Selection by higher EBV's
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The genetic evaluation model is wrong 

2 Strategies: 

1. Contemporary groups with phenotypic trend 
• Around 90 CG/Generation with about 500 animals each. 
• Simulated: True effect of CG as random with time trend 
• Estimated: in BLUP as fixed effect 

2. Using different h2 in blup evaluations to those used for simulation (results not shown)
• e.g. simulated h2=0.10 and evaluation h2=0.05 
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Within each replicate: 
e.g.  
At the end of generation 5:  estimate EBV of young males (without progeny) ො𝑢𝑝
At the end of generation 6: estimate EBV of the same males (with progeny) ො𝑢𝑤
Compute statistics:  

Bias Slope Correlation

𝜇𝑤𝑝 = ෞ𝑢𝑝 − ෞ𝑢𝑤 𝑏𝑤,𝑝 =
𝑐𝑜𝑣(ෞ𝑢𝑝, ෞ𝑢𝑤)

𝑣𝑎𝑟( ෢𝑢𝑝)
𝜌𝑝,𝑤=

𝑐𝑜𝑣( ෞ𝑢𝑤, ෢𝑢𝑝)

𝑣𝑎𝑟(෣𝑢𝑤)𝑣𝑎𝑟( ෢𝑢𝑝)

In this work we estimate the statistics for generations 5 to 9: 

5 vs 6 
6 vs 7 
7 vs 8 
8 vs 9 
9 vs 10
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First Results

Using the correct evaluation model 
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True Bias
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True Bias
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SLOPE bw,p
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True

Relative accuracy gain
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Using the wrong evaluation model 
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Wrong evaluation fitting CG as fixed when they have a time trend 
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SLOPE bw,p
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Estimated ⇒ 𝜌𝑝,𝑤 =
𝑐𝑜𝑣( ෞ𝑢𝑤 , ෢𝑢𝑝)
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Conclusions

• The proposed method LR estimates well bias, slope and accuracy when
the model is in concordance with the reality.  

But when the model has differences with the reality: 

• With wrong model for contemporary groups
• It is not possible to estimate bias or slope. 
• Accuracies can be estimated but not well 

• With wrong heritabilities:
• The bias could be under or over estimated
• The slope is uninformative about the reality.
• Accuracies can be estimated 
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Wrong h2 in genetic evaluations
simulated with h2 0.10 and evaluated with h2 0.05
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Wrong h2 in genetic evaluations
simulated with h2 0.10 and evaluated with h2 0.05
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Wrong h2 in genetic evaluations
simulated with h2 0.10 and evaluated with h2 0.05
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