

Multi-trait mixed modelling of milk infrared spectral data for better accuracy of prediction

Tesfaye K Belay¹, Binyam S Dagnachew², Tormod Ådnøy¹

¹ Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences

The 69th EAAP Annual Meeting, 29th August 2018, Dubrovnik, Croatia

² Department of Aquaculture breeding and genetics, Norwegian Institute of Food, Fisheries and Aquaculture Research

N H

Introduction

Fourier transform mid-infrared (FT-MIR) spectra of milk is routinely recorded.

- FT-MIR spectral information could be exploited through two approaches:
 - Mainly utilized for phenotyping of traits before EBV prediction Indirect prediction (IP).
 - Use of breeding values of spectra directly is not common Direct prediction (DP).

Introduction...

Dagnachew et al. 2013

N B

Research questions:

Does the DP approach improve accuracy of prediction?

- Is it reasonable to use PLS regression outputs (β_p) for converting:
 - -covariance components into variance components (e.g. $\widehat{G}_{5x5} = \widehat{\beta}_P \longrightarrow \widehat{\sigma}_a^2$)?
 - -genetic part of latent traits into EBV (e.g. $\widehat{a}_{5x5} \xrightarrow{\widehat{\beta}_P}$ EBV) ?
- Is there a relationship between performance of the IP or DP and predictive ability of calibration models (R^2) ?

Materials and Methods

Data: both real and simulated data used.

■ **Traits**: milk protein%, fat%, lactose% (for EBV prediction) and blood BHB (for phenotypic prediction).

Calibration model-using partial least square (PLS) regression.

Materials and Methods...

Spectral dimension reduced by PCA/PLS regression.

An animal model fitted to estimate CVC and predict EBV and phenotypes.

$$y = Xb + Za + Wp + Qh + e$$

- Accuracy(r) of prediction:
 - cor(measured/simulated, predicted values), or
 - based on coefficient matrix to find PEV.

Results: real data

- Better accuracy of EBV in DP than IP approach (for milk contents):
 - Reduction in mean PEV for using DP: 3.73 7.06%
 - Relative genetic gain for using DP : 2.99 4.85%
- The reverse is true for phenotypic prediction (for blood BHB):
 - Accuracy is 0.543 in IP, but 0.527 in DP (improved by 3.04% in IP)
 - Accuracies both in IP & DP are less than in PLS (0.586).

Simulation

- Program written in R (https://github.com/soloboan/Multi-trait_simulations) used.
- Different genetic (low to high:0.10 to 0.90) and residual (zero to high) correlations considered in simulation.
- PLS regression on (1st trait (y) vs 2nd & 3rd latent traits (x)):
 - true phenotypic values (TPV): β-phenotypic $(\hat{\beta}_p)$, R_p^2
 - true breeding values (TBV): β-genetic $(\hat{\beta}_g)$, R_g^2

Results: simulated data

- DP resulted in better accuracy of EBV than IP (using either $\hat{\beta}_p$ or $\hat{\beta}_g$).
 - E.g. improved by 5.2 214.8% when \hat{eta}_g used, by 4.1 54.4% when \hat{eta}_p used.
- In DP, $\hat{\beta}_a$ improved accuracy of EBV, but not in IP.
 - E.g. 11 138% at low genetic correlation scenario.
- Better phenotypic accuracy found in IP than DP approach.

Results: simulated data

■ EBV/phenotypic accuracy increased with calibration R² and correlation structures.

Conclusions

- The DP approach would be useful method for EBV prediction directly from heritable part of spectra.
 - ightharpoonup Even resulted in better EBV accuracy when \hat{eta}_g used

■ The IP approach/PLS regression based equation is preferable for phenotypic prediction.

■ Calibration R², correlation structures, type of PLS coefficients or dimension reduction techniques used had influenced the 2 approaches.

Acknowledgments

Norges miljø- og biovitenskapelige universitet

Polish Federation of Cattle Breeders and Dairy Farmers

Thank you for your attention!

Reading materials on IP and DP approaches

J Dairy Sci. 2013 Sep;96(9):5933-42. doi: 10.3168/jds.2012-6068. Epub 2013 Jul 5.

Genetic components of milk Fourier-transform infrared spectra used to predict breeding values for milk composition and quality traits in dairy goats.

Dagnachew BS1, Meuwissen TH, Adnøy T.

J. Dairy Sci. 100:6312-6326 https://doi.org/10.3168/jds.2016-12252

© 2017, THE AUTHORS. Published by FASS and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

An attempt at predicting blood \(\beta\)-hydroxybutyrate from Fourier-transform mid-infrared spectra of milk using multivariate mixed models in Polish dairy cattle

T. K. Belay,* B. S. Dagnachew,* Z. M. Kowalski,† and T. Ådnøy*
*Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway †Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, Krakow 30-059, Al. Mickiewicza 24/28, Poland

J. Dairy Sci. 101:6174-6189 https://doi.org/10.3168/jds.2017-13322

© 2018, THE AUTHORS. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Prediction accuracy of direct and indirect approaches, and their relationships with prediction ability of calibration models

T. K. Belay,* B. S. Dagnachew,* S. A. Boison,† and T. Ådnøy*
*Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway tNofima: The Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430 As. Norway

J. Dairy Sci.100: 2057–2067 https://doi.org/10.3168/jds.2016-11951

Comparison between direct and indirect methods for exploiting Fourier transform spectral information in estimation of breeding values for fine composition and technological properties of milk

V. Bonfatti , D. Vicario, L. Degano, A. Lugo, P. Carnier