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Metabolic efficiency
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Important things to keep in mind about
metabolic efficiency

= Economical vs. biological efficiency

= Metabolic efficiency: different measures, different
outcomes...
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Improving metabolic efficiency as means
to feed the growing population
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Transition period in dairy cows
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Nutrient partitioning

= Homeostasis — Maintenance of physiological equilibrium,
l.e. constant conditions in the internal environment

= Homeorhesis — Orchestrated changes for the priorities of
a physiological state, i.e. coordination of metabolism in
various tissues to support a physiological state

Table II. Possible Homeorhetic Hormones and Glucose-Related Tissue Responses in Pregnancy and Lactation

State Hormone

Putative action

Tissue/response

Mid pregnancy Progesterone

Late pregnancy

Estrogens
Lactogenesis, Prolactin
early lactation Estrogen
Cortisol

Somatotropin

Placental lactogen

T insulin sensitivity

L insulin sensitivity and
responsiveness

4 insulin sensitivity and
responsiveness

il adipose glucose uptake
T adipose lipogenesis

d glucose uptake by adipose and muscle
l adipose lipogenesis
T muscle glycolysis and lactate release

T liver gluconeogenesis

 glucose uptake by adipose and muscle
L adipose lipogenesis

1 protein synthesis

T protein degradation } muscle

T amino acid release

Bell and Bauman, 1997
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Lipidomics has transformed our
understanding

Biological Question  Experimental Design Sampling Sample Preparation Data Acquisition Data Processing Statistical Analysis Interpretation
? oo | B Ne Y

o, 65 51 D

* Invivoorin * PlasmalSerum + Extraction + Analytical + Normalization + ANOVA
vitro model » Tissues + Dry-down platform + Peak alignment + Principal

* Expected * Uring + Derivatization * Instrumentation + Peak validation component
variation * Celllysate + Internal method analysis

+ Population + Saliva standards + External « PLS cluster
parameters * Food + Reconstitution standards analysis
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To date we have measured 1,469 lipids In
the cow

= Lipids include:
Sphingolipids: ceramides, monohexosylceramides,
lactosylceramides, and sphingomyelins
Fatty acylglycerols: diacylglycerols, triacylglycerols, and
monoalkyldiacylglycerols
Glycerophospholipids: phosphatidylcholine,
phosphatidylethanolamines, phosphatidylglycerols,
phosphatidylserines, and lyso-phospholipids

= Plasma/serum, liver, adipose, skeletal muscle, cultured
cells, and isolated lipoproteins (VLDL, LDL, and HDL)
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Hypothesis

= Considering the energetic links between nutrient
partitioning and hepatic function during the transition
period it Is reasonable to hypothesize their
relationship with metabolic efficiency in dairy cows

Objectives

= To evaluate performance, steatosis and the hepatic
lipidome In dairy cows diverging in feed efficiency
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Material and Methods




Animals and

Experimental Conditioncomnsiage

= DoVan Farms, Berlin,

= 23 multiparous gestating and
lactating Holstein cows

BW: 646 + 86 kg,
BCS: 3.4 £ 0.54,
MY: 37.52 + 3.84 kg
Parity: 3.59 = 1.64

= Corn silage-based diet

Ingredients, % of
DM

paPrrt?J-m Lactation

29.00 33.20
Grass haylage 21.70 8.61
Grass hay 25.00 1.95
PA Dry ground corn 2.72 20.80
Prepartum mix! 12.80 -
Lactation mix A2 - 17.80
Aminoplus ® 5.82 5.72
Cottonseed with lint - 4.35
Sugar cane syrup 3.40
Lactation mix B3 4.19
Close-u
supplempent4 3.0
Nutrient Pre- :
L Lactation
Composition partum
DM, % 51.30 51.70
CP, % of DM 13.40 15.50
NDF, % of DM 47.90 31.10
ADF, % of DM 30.50 19.80
Crude fat, % of DM 3.30 4.80
Ash, % of DM 8.30 7.90
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Productive Performance

= 40-day evaluation period
Weekly BW, BCS — - L
Daily MY (thrice daily) B8 § Ep L
= Liver biopsy S .M 4T BT BAS
Pre-partum (d =- 12)
Post-partum (d = 10)

College of Agriculture
COrﬂe| | CALS and Life Sciences



Productive Performance

* Residual Feed Intake (Koch et al., 1963; Xi et al.,
2016)

RFI = DMI — DMI

DM, eqictea = 7-68 + (0.16*parity) + (0.37*pcADG) -
(0.02*pcBWO-75) + (0.21*ECM)

actual

predicted

* High-RFI = Inefficient > 0.5 SD mean (n = 10) n
* Low-RFI = Efficient < 0.5 SD mean (n = 13)
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Sample Analyses

= Liver lipid content
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Hexane Method (Hara and Radin, 1978; Starke et al., 2010)

= Time-of-flight mass spectrometry (TOFMS)
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Statistical Analyses

"ﬁ MetaboAnalyst (http://www.metaboanalyst.ca/)
= Log transformation, auto-scale
Scores Plot
VIP Scores

SQSaS@ SAS (version 9.4): GLM procedure

= LS Means: productive performance and liver lipid of
RFI groups

= Partial correlations (MANOVA/PRINTE statement)

= Significance: P <0.05
= Trend towards significance: 0.10 =2 P > 0.05
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http://www.metaboanalyst.ca/
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Feed efficiency and milk production

Productive performance traits Inefficient Efficient P-value

Dry matter intake (kg/d) 15.28 13.11 0.01
Pregnancy corrected BW (kg)  642.56 649.57 0.86
Residual feed intake (kg/d) 1.20 -0.77 0.01
Parity (n) 3.22 3.85 0.39
Calf BW (kg) 39.64 40.37 0.67
Milk yield (kg/d) 39.15 37.15 0.19
ECM (kg/d) 39.08 38.27 0.67
Fat (%) 3.92 4.10 0.42
Protein (%) 3.41 3.54 0.37
Lactose (%) 4.62 4.67 0.45
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Feed efficiency and hepatic lipid content
In the pre-partum period

Lipid classes (cps) Inefficient Efficient P-value

Sphingolipids

Ceramide 24.93 22.74 0.10

Monohexosylceramide 0.35 0.38 0.09

Sphingomyelin 103.59 114.99 0.17
Fatty Acylglycerols

Monoalkyldiacylglycerol 133.64 522.86 0.20

Diacylglycerol 4.81 6.19 0.12

Triacylglycerol 13.68 38.72 0.29
Glycerophospholipids

Phosphatidylcholine 35.95 38.80 0.25

Phosphatidylethanolamine 26.52 29.44 0.11
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Feed efficiency and hepatic lipid content
In the post-partum period

Lipid classes (cps) Inefficient Efficient P-value

Sphingolipids

Ceramide 22.76 21.74 0.17

Monohexosylceramide 0.50 0.58 0.20

Sphingomyelin 133.81 133.05 0.96
Fatty Acylglycerols

Monoalkyldiacylglycerol 2503.70 3321.86 0.31

Diacylglycerol 12.23 20.78 0.23

Triacylglycerol 195.32 307.95 0.25
Glycerophospholipids

Phosphatidylcholine 43.10 44.53 0.81

Phosphatidylethanolamine 37.46 36.97 0.91
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Changes Iin hepatic lipid moieties are not
uniform

* PC example
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Partial correlations in the pre-partum

period
Lipid classes DMI RFI Parity Calf BW Milk yield ECM Fat Protein Lactose

Sphingolipids

Ceramide -0.07 0.19 -0.34 -0.17 0.48*** -0.35 0.09 -0.03 -0.06
Monohexosylceramide -0.32 -0.28 0.17 0.06 -0.35 -0.21 0.07 0.24 -0.01
Fatty Acylglycerols

Monoalkyldiacylglycerol -0.23 -0.26 0.27 0.2 -0.33 -0.07 0.24 0.40* -0.29
Diacylglycerol -0.32 -0.36 0.32 0.15 -0.29 -0.04 0.27 0.3 -0.24
Triacylglycerol -0.2 -0.2 0.22 0.2 -0.35 -0.13 0.17 0.39* -0.29
Glycerophospholipids

Phosphatidylcholine -0.54*** -0.40* -0.23 0.24 -0.31 -0.40*-0.21 0.01 0.11
Phosphatidylethanolamine -0.45*** -0.43*** 0.06  0.23 -0.1 -0.12 -0.11 0.19 -0.01

**P < 0.01; *P < 0.05; *0.05 < P < 0.10
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Circulating ceramide Is consistently
positively related to milk yield

A B

Pearson correlation coefficient (r)

0 01 02 03 04 05 06 P-value < 0.001
[ 1 1 1 1 1 J R2=0.27
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Partial correlations in the pre-partum

period
Lipid classes DMI RFI Parity Calf BW Milk yield ECM Fat Protein Lactose

Sphingolipids

Ceramide -0.07 0.19 -0.34 -0.17 0.48*** -0.35 0.09 -0.03 -0.06
Monohexosylceramide -0.32 -0.28 0.17 0.06 -0.35 -0.21 0.07 0.24 -0.01
Fatty Acylglycerols

Monoalkyldiacylglycerol -0.23 -0.26 0.27 0.2 -0.33 -0.07 0.24 0.40* -0.29
Diacylglycerol -0.32 -0.36 0.32 0.15 -0.29 -0.04 0.27 0.3 -0.24
Triacylglycerol -0.2 -0.2 0.22 0.2 -0.35 -0.13 0.17 0.39* -0.29
Glycerophospholipids

Phosphatidylcholine -0.54*** -0.40* -0.23 0.24 -0.31 -0.40*-0.21 0.01 0.11
Phosphatidylethanolamine -0.45*** -0.43*** 0.06  0.23 -0.1 -0.12 -0.11 0.19 -0.01

#*+P < 0.01; **P < 0.05; *0.05 < P < 0.10
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Glycerophospholipids and fat export
through the liver
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Partial correlations in the post-partum
period

Lipid Classes DMI RFI  Parity Calf BW Milk yield ECM Fat Protein Lactose
Sphingolipids
Ceramide 0.09 0.08 -0.08 0.13 -0.21 -0.03 0.09 0.38* 0.12
Monohexosylceramide -0.27 -0.23 0.40* 0.15 -0.18 -0.11 0.06 0.16 -0.02

Fatty Acylglycerols
Monoalkyldiacylglycerol -0.25 -0.26 0.3 0.1 0.09 0.04 -0.03 -0.08 0.14

Diacylglycerol -0.22 -0.2 031 0.2 -0.37 -0.19 0.09 0.43*** -0.21

Triacylglycerol -0.25 -0.25 0.33 0.11 0.08 0.02 -0.05 -0.07 0.2
Glycerophospholipids

Phosphatidylcholine -0.1 -0.06 -0.15 0.06 0.32 0.07 -0.21 -0.37* 0.42***

Phosphatidylethanolamine -0.05 -0.05 -0.14 -0.05 0.36* 0.12 -0.2 -0.41* 0.37*

#*P < 0,01; **P < 0.05; *0.05 < P < 0.10 | | C ﬁ Ls College of Agriculture
Corne and Life Sciences



Scores plots and VIP scores

Component 2 ( 2.8 %)
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Timing of fat mobilization
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Timing of fat mobilization

Diacylglycerol
(e.g. C16:0/C18:1 DAG)

4

Triacylglycerol
(e.g. C16:0/C18:1/C18:0 TAG)

Storage

Erion and Shulman , 2010; Newgard, 2012; | | ﬁ L College of Agriculture
Summers, 2015; Ma et al., 2017 O r n e and Life Sciences



Summary of Findings

1. Distinct hepatic lipidomic profiles were identified in
the present study

2. The negative associations between PCs and PEs

with RFI might support improved fat export
through the liver

3. Efficient animals displayed a pattern of elevated
MADAGS In pre-partum and lowered values post-
partum
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Implications

= Considering our results, timing of fat mobilization
might be of great importance in the context of feed
efficiency. The differences Iin the hepatic lipidomic
profile of cows with divergent efficiencies highlight
new opportunities in the development of efficiency
biomarkers related to lipid metabolism
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