

Olistat-Cvn 20%

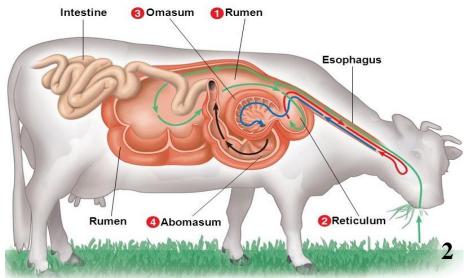
Olistat-P

Olistat-G

Free and rumen-protected essential oils incubated *in vitro*: stability and fermentation parameters

Session 48: New technologies to improve feed efficiency

N. Amin, F. Tagliapietra, N. Guzzo and L. Bailoni


Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Italy

Email: nida.amin@phd.unipd.it

EAAP 2018

69th Annual Meeting of the European Federation of Animal Science Dubrovnik, Croatia, 27th to 31st August 2018

- ➤Antibiotics ban in 2006 resulted in an increased demand of finding alternatives
- Essential oils (EOs): Cinnamaldehyde, thymol and eugenol possess antimicrobial properties
- ➢EOs are generally volatile that causes hindrance on their usage in animal feed
- ≻ Majority of EOs fed to the ruminants get absorbed from rumen
- ≻EOs also get absorbed to feed components

- Microencapsulation is an efficient technology that enabled preparation of stable EO products
- EOs are coated by a matrix (fatty acids, starch etc)
 - ✓ Stability to EOs from ruminal degradation
 - ✓ Allow site-specific slow release of EO product

Capsule wall

The proper selection of matrix material to obtain desired degree of stability is often challenging and demand more research

RESULTS

CONCLUSIONS

- 1. Test the **ruminal stability of free and rumenprotected EO** products **in an** *in vitro* **assay** using **Ankom Daisy^{II} technique**
- 2. Observe the effects of essential oil products on

≻ rumen pH

- ➢ fermentation parameters
- ≻ protozoa number

INTRODUCTION | OBJECTIVES | MATERIALS AND METHODS | RESULTS | C

CONCLUSIONS

Tested essential oil products

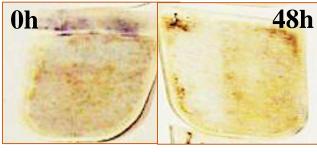
3 essential oils in 2 different form

≻Free (fEOs)

Olistat-G Olistat-P Olistat-Cyn 20%

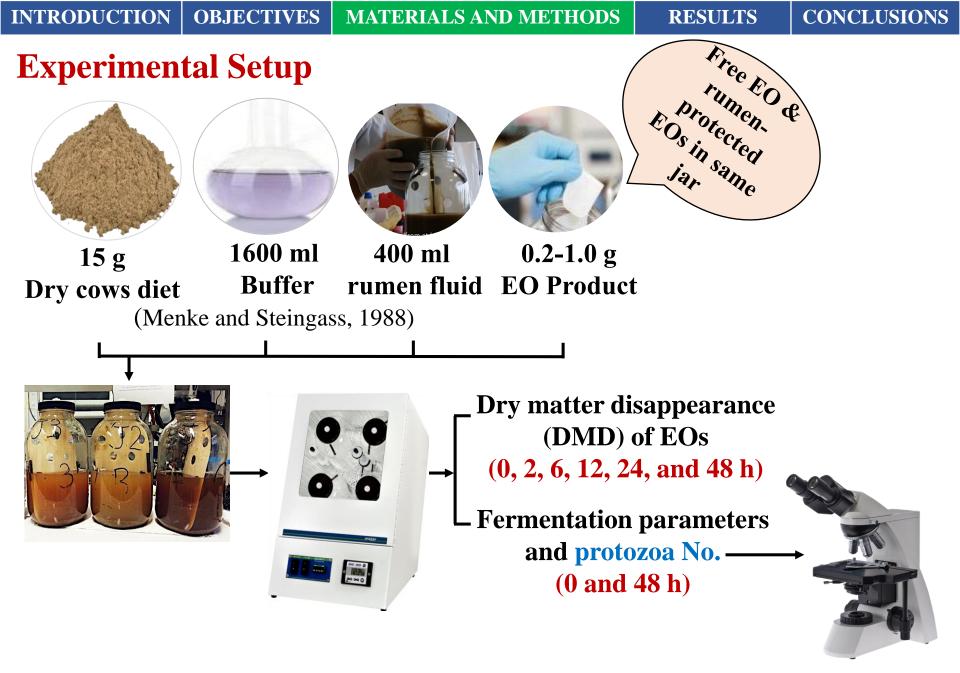
Microencapsulated/rumen-protected (rpEOs)

rpEOs	Olistat-G	Olistat-P	Olistat-Cyn 20%
Components	 Cinnamaldehyde (3%) Vitamins Pro-vitamins 	 Cinnamaldehyde Thymol Eugenol 	1. Cinnamaldehyde (20%)
Protection matrix	 Vegetable hydrogenated fatty acids CaCO₃ Corn starch Vegetable extracts 	 Vegetable hydrogenated fatty acids CaCO₃ 	 Vegetable hydrogenated fatty acids CaCO₃ wheat flour

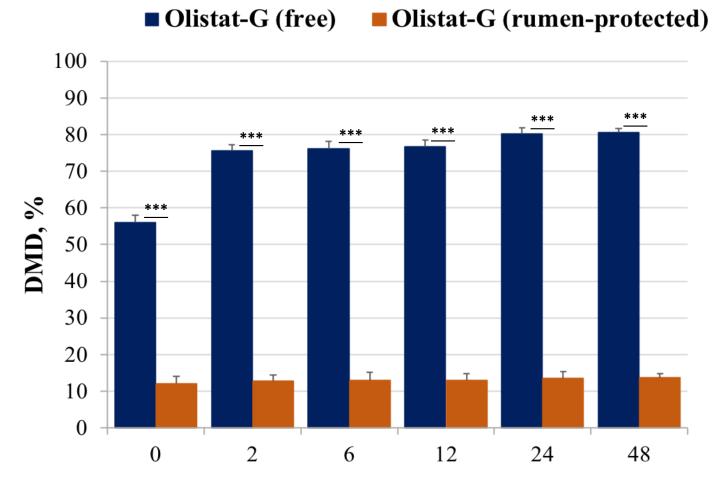

CONCLUSIONS

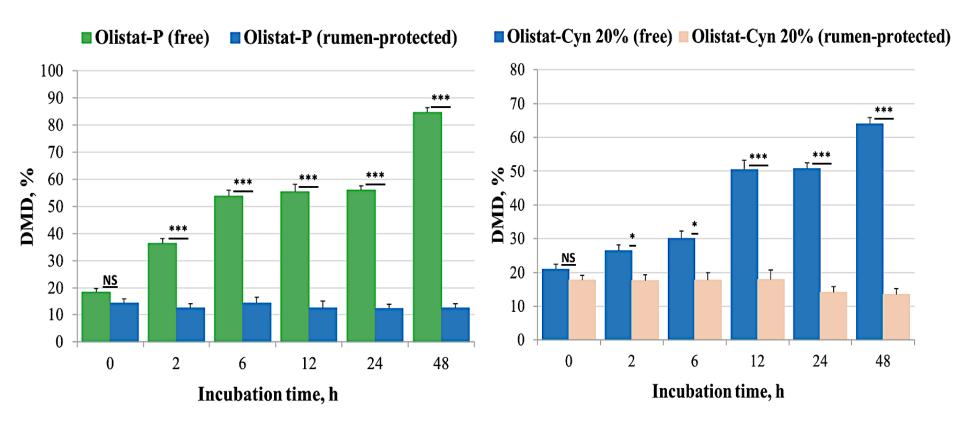
Working principle of Ankom Daisy^{II} technique

- 1. Relies on filter bag technology, which encapsulate samples and prevent filtration errors
- 2. Allow simultaneous incubation of different additives in same vessel



- 2. Comprises of four digestion vessels
 - 4L capacity eachrotate continuously to allow mixing of inoculum
- 3. Material that disappears from the bag is considered soluble and digestible


4. Ruminal stability of products was calculated by recording dry matter disappearance (DMD)


1. Ruminal stability of essential oil product: **OLISTAT-G**

2. Ruminal stability of essential oil products: OLISTAT-P &OLISTAT-Cyn 20%

Product	No additive	Olistat-G (f+rpEO)		Olistat-Cyn (f+rpEO)	RMSE	<i>P</i> -value
Incubation time (h)	0	48	48	48		
pН	6.93 ^B	6.36 ^A	6.46 ^A	6.73 ^{AB}	0.12	< 0.001
Protozoa (log10/mL)	4.73 ^b	4.40 ^a	4.56 ^{ab}	4.72 ^{ab}	0.19	0.099
Total-VFA (mmol/L)	17.0 ^a	33.0 ^b	27.0 ^{ab}	18.0 ^{ab}	9.8	0.095
VFA (%)						
Acetate	71.7	71.6	72.4	70.4	4.5	0.96
Propionate	16.6	18.0	16.1	18.2	3.5	0.82
Butyrate	8.4	7.9	9.7	9.1	1.8	0.61
Acetate : Propionate	4.31	4.67	4.96	3.88	1.0	0.71

Legends - RMSE: root mean square error

^{a,b,c} different superscripts within a row indicate, means differ ($P \le 0.05$)

^{A,B,C} different superscripts within a row indicate, means differ ($P \le 0.001$)

CONCLUSIONS

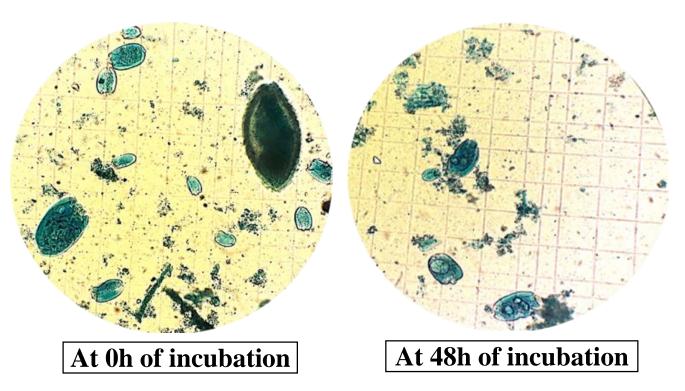
Stability

Free essential oils (fEOs)

➤ rapidly degraded

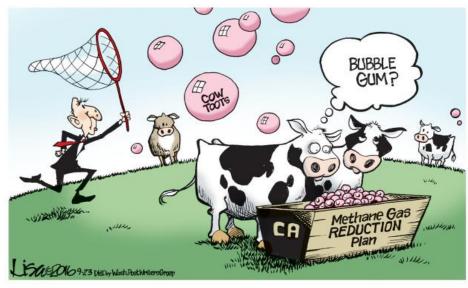
➤ with maximum disappearance of products observed at 48 h of incubation

Microencapsulated/rumen-protected essential oils (rpEOs)


Highly stable with relatively low disappearance in the ruminal environment

Form of products	Free (fEO)	Rumen-protected (rpEO)
Olistat-Cyn 20%	64.0%	13.4%
Olistat-G	80.5%	13.7%
Olistat-P	84.6%	12.4%

Fermentation parameters & protozoa number


Only OLISTAT-G caused a significant effect on fermentation parameters & protozoa No.

- 1. The protection of EOs from ruminal degradation by microencapsulation was found to be very effective to ensure the rumen by-pass.
- 2. Olistat-G was capable of changing rumen fermentation

Future perspective

In vivo experiments can be conducted in future using Olistat-G, to verify the dosage and long-term beneficial effects of this EO in ruminants

THANK YOU FOR YOUR ATTENTION

- Statistical analysis was conducted using PROC GLM procedure in SAS
- Data of dry matter disappearance (DMD, % DM) was analyzed considering in the model
 - ✓ the effect of EO products (6 levels: three EOs in two different forms)
 - ✓ the effect of incubation time (6 levels: 0, 2, 6, 12, 24, and 48 h) and
 - \checkmark the interaction EO products x incubation time

```
proc mixed data=SILA_FINALic;
```

```
class Time EO products;
model Corrected_DMD =EO products|Time/DDFM=KR OUTP=R;
repeated / group=Time;
lsmeans Time*EO products / diff adjust=Tukey;
run;
quit:
```

quit;

```
data SILA_FINAL_t0;
set SILA_FINAL1;
if Time='0';
```

proc glm data=SILA_FINAL outstat=ANOVA_NIDA0; class EO products; model Corrected_DMD = EO products; *test h=metodo e=incubaz(metodo); *test h=metodo*alimento e=incubaz(metodo); *test h=metodo*alimento*incubaz(metodo) e=incubaz(metodo); lsmeans EO products / stderr out=LSMEANS_NIDA0; contrast Olistat-G_F vs Olistat-G_protected' Additive 1 -1 0 0 0; contrast Olistat-P_F vs Olistat-P_protected' Additive 0 0 1 -1 0 0; contrast Olistat-G_F vs Olistat-G_protected' Additive 0 0 0 1 -1; run; quit;