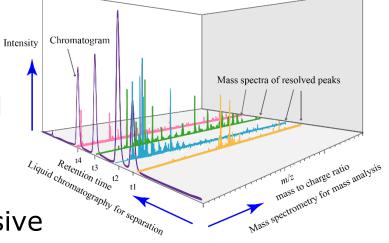

Multiomics analysis of Feed Efficiency in Danish Breeding boars

Victor A. O. Carmelo and Haja N. Kadarmideen Quantitative Genomics, Bioinformatics and Computational Biology Group DTU Compute

DTU Compute Department of Applied Mathematics and Computer Science

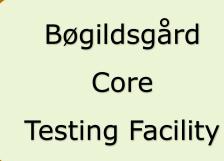
Background

- Feed efficiency (FE) is one of the most important goals in pig production and pig breeding goals
- This study is part of the bigger project called FeedOMICS (a 4 year project) where the main objectives are to:
 - generate transcriptomic and metabolite profiles in feed efficient and inefficient pigs and identify highly predictive biomarkers of feed efficiency via systems biology methods.
 - conduct integration of genomic data with transcriptomic and metabolomic datasets, and analyse them via bioinformatics and integrative systems biology methods
 - To develop powerful prediction methods for feed efficiency in pigs and to provide accurate functionally relevant markers for highly feed efficient pigs.



LC-MS – Liquid Chromatography Mass Spectrometry

- LC is the technique for physical separation of molecules
- MS measures the masses of the molecules


Why LC-MS?

LC-MS allows a broad untargeted quantification of metabolites in our desired target.

Coupled with relatively non-invasive

sampling it is a great tool for gaining functional knowledge and a possible screening tool.

5 week acclimatization 30kg

DTU

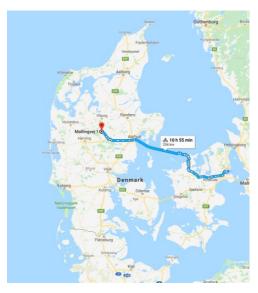
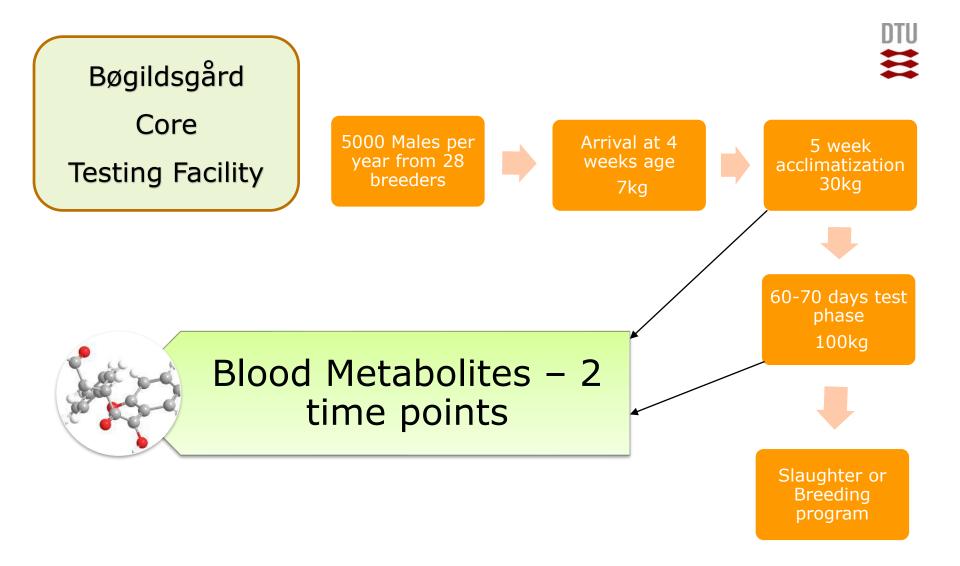



Photo by Markus Drag

60-70 days test phase 100kg

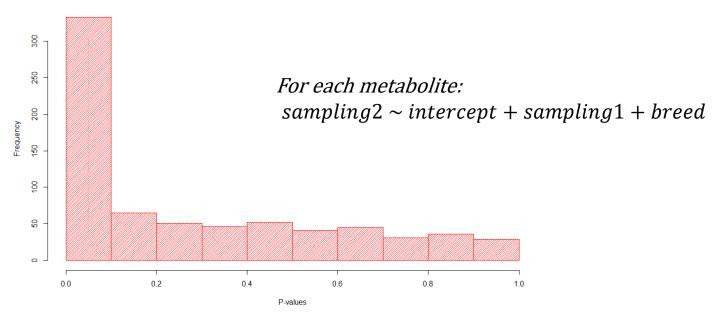
Slaughter or Breeding program

Phenotypes and data

Weight data Raw feed intake Feed Efficiency Index Pedigree Information

Data Description

Total Duroc Sampled: 59 (x2)

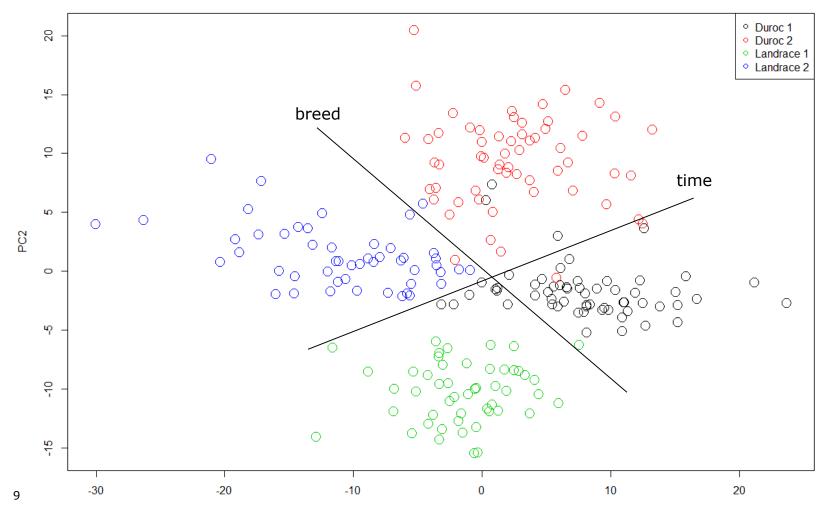


Example Compounds: Nucleic Acids, Amino Acids, Other Acids, Vitamins and many uncharacterized compounds (polar compounds in general)

Total Landrace Sampled: 50 (x2)

Metabolite Data stability

P-values of Comparison of Sampling points



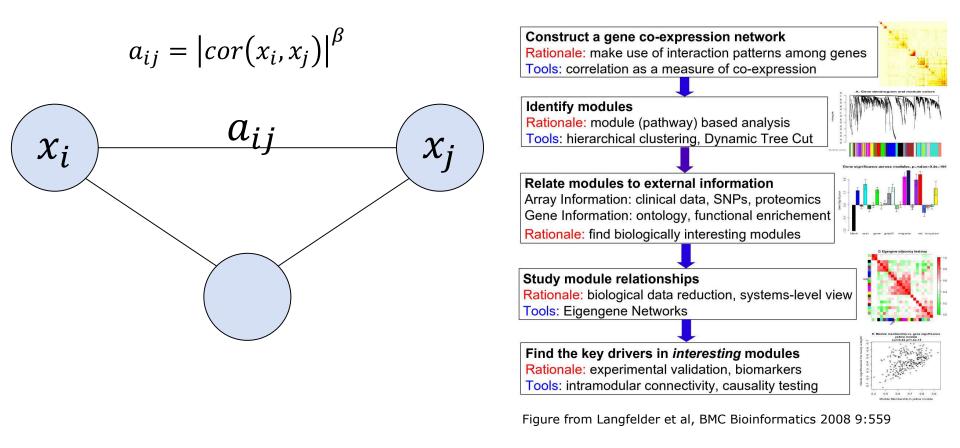
Relationship between sample points is significant for most metabolites

This indicates blood metabolites is a stable phenotype

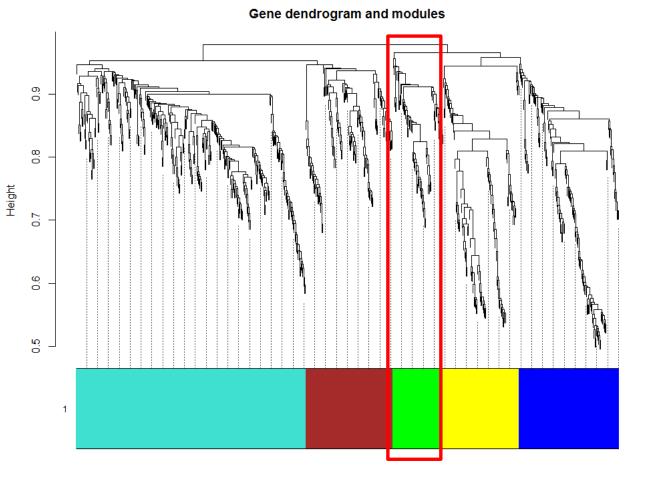
Data Overview

PCA of Metabolics

Linear Modelling


• To asses the relation between individual metabolites and FE, each metabolite was fit using a linear model to FE.

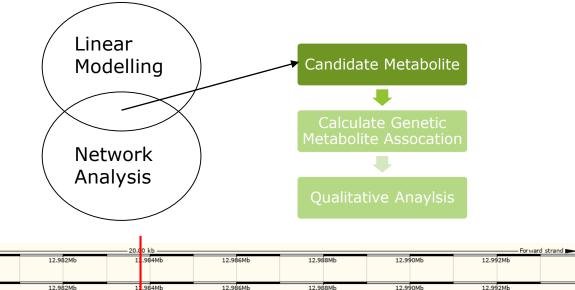
	DD 1	DD 2	DD 1+2	LL 1	LL 2	LL 1+2
P < 0.05	71	64	71	90	76	89
Bootstrap P value	<10 ⁻⁶	<10 ⁻⁵	<10 ⁻⁶	<10-7	<10 ⁻⁶	<10-7

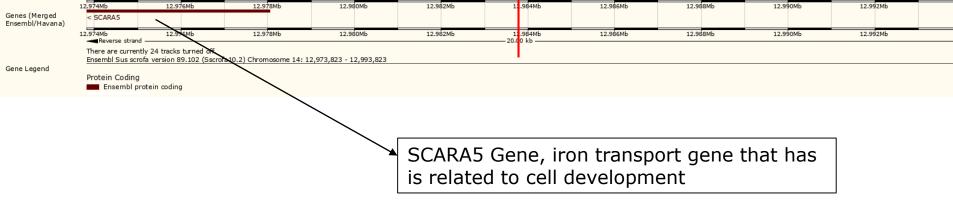

Examples: Sorbitol, Monosaccharide, Riboflavine, Nicotine, Guanosine, Uridine, Arginine

Metabolic Network Construction - WGCNA

Metabolic Network Construction - WGCNA

- Network Generated from DD 30 kg sampling
- Green module has a correlation of -0.339 with FE
- P-value of correlation is 0.008




Metabolic Network Summary Results

	Samp	ling				DD 1	DD 2	LL 1	1			LL 2		
	N modules					5	7	7				5		
	Significant modules for Feed Efficiency				1	1	3				1			
DD	1:	Feed Efficency	weight	Consumption	Daily Gain	Meat Percentage	LL 1:		Feed Efficency	weight	Consumption	Daily Gain	Meat Percentage	- 1
							1	MEblue	0.01	-0.04	-0.02	0.01	0.24	-0.8
	MEblue	0.12	0.01	0.07	-0.12).8	MEbrown	-0.06	0	-0.04	0.04	0.11	-0.6
	MEbrown	-0.14	0.16	0.09	0.08).4	MEgreen	0.33	-0.15	-0.11	-0.15	-0.18	-0.4
	MEgreen	-0.34	0.18	0.11	0.15	0.27	0.2	MEgrey	-0.18	0.26	0.26	0.16	-0.33	- 0
	L							MEred	0.42	-0.45	-0.42	-0.25	-0.06	-0.2
	MEturquoise	0.02	-0.16	-0.23	0.01		0.4	MEturquoise	-0.17	0.13	0.1	0.13	-0.07	0.4
	MEyellow	-0.11	0.11	0.16	0.09		0.8	MEyellow	-0.3	0.28	0.23	0.14	0.36	0.8

Metabolite Annotation

- Many Metabolites are uncharacterized
- Functional Characterization is still possible
- Uncharacterized compounds can still be used for screening
- Further laboratory analysis can identify properties of unknown compounds

Conclusions

- We have shown methods to identify relation between blood metabolites and feed efficiency
- Results reveal that the metabolites are related to feed efficiency using both network approaches and linear modelling
- This has implications for the functional background of feed efficiency
- Metabolites can be a potential screening tool for feed efficiency

Acknowledgments

- Prof Haja Kadarmideen, Quantitative Genomics, Bioinformatics and Computational Biology Group, DTU Compute
- Prof Claus T. Ekstrøm Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Funding:

DET FRIE

FORSKNINGSRÅD DANISH COUNCIL FOR INDEPENDENT

Technical University

of Denmark

Questions?

Than you for listening!