

Size and density influence of concentrates to increase by-pass protein fraction in dairy cows' diet

Florence Dufreneix^{1,2}, Philippe Faverdin¹, François Gautier², Jean-Louis Peyraud¹

69th EAAP Annual meeting – 2018

¹PEGASE, Agrocampus Ouest, INRA, 35590 Saint-Gilles, France ²Agrial, 4 rue des Roquemonts, 14000 Caen, France

Introduction M	1aterial & Methods	Results	Applications	Conclusion
----------------	--------------------	---------	--------------	------------

- Protection of protein: major challenge in dairy cows
 - Reduce the use of vegetable proteins (increase protein efficiency)
 - Reduce nitrogen excretion in environment

Introduction	Material & Methods	Results	Applications	Conclusion
--------------	--------------------	---------	--------------	------------

- Protection of protein: major challenge in dairy cows
 - Reduce the use of vegetable proteins (increase protein efficiency)
 - Reduce nitrogen excretion in environment
- Different techniques
 - Protection against microbial fermentations
 - Formaldehyde tanning (carcinogenic)
 - New protections (essential oils, vegetable tannins)
 - Less efficient
 - Short-term action

Introduction	Material & Methods	Results	Applications	Conclusion
--------------	--------------------	---------	--------------	------------

- Protection of protein: major challenge in dairy cows
 - Reduce the use of vegetable proteins (increase protein efficiency)
 - Reduce nitrogen excretion in environment
- Different techniques
 - Protection against microbial fermentations
 - Formaldehyde tanning (carcinogenic)
 - New protections (essential oils, vegetable tannins)
 - Less efficient
 - Short-term action
 - Reduce time spent by particle in the rumen
 - Influence of size and density on the mean retention time

Introduction	Material & Methods	Results	Applications	Conclusion
--------------	--------------------	---------	--------------	------------

- Protection of protein: major challenge in dairy cows
 - Reduce the use of vegetable proteins (increase protein efficiency)
 - Reduce nitrogen excretion in environment
- Different techniques
 - Protection against microbial fermentations
 - Formaldehyde tanning (carcinogenic)
 - New protections (essential oils, vegetable tannins)
 - Less efficient
 - Short-term action
 - Reduce time spent by particle in the rumen
 - Influence of size and density on the mean retention time

Introduction	Material & Methods	Results	Applications	Conclusion
	+ Specific gravity		 Rumina Gases decrea Reduct 	al fermentations production = ise of density tion of size
	-		Size	+

Introduction	Materi	al & Methods	Results	Applications	Conclusion
 2) Release of fermentation ga increase of de Reduction of 	ses ensity size	+ Specific gravity		 Rumina Gases decrea Reduct 	al fermentations production = ise of density tion of size
		-		Size	+

Effects of size and density on particle passage rate in the rumen

- Known on forages
- Few studies on concentrates

Which size and density of concentrates allow the fastest escape from the rumen ?

Introduction	Material & Methods	Results	Applications	Conclusion
--------------	--------------------	---------	--------------	------------

- Use of plastic particles: no effect of rumen microbial fermentations
- Experimental design:
 4 lactating cows in a Latin square design

 Faecal kinetics monitored during 4 periods of 106 hours (17 faeces samplings)

Introduction	Material & Methods	Results	Applications	Conclusion
Faecal sampling	Wet sieving under high pressure water	Den	sity separation (surfactant)	

Photography

Counting with ImageJ software

Introduction	Material & Methods	Results	Applications	Conclusion
--------------	--------------------	---------	--------------	------------

• No results for particles of 0.5mm size

Introduction	Material & Methods	Results	Applications	Conclusion
--------------	--------------------	---------	--------------	------------

- No results for particles of 0.5mm size
- Quadratic response of density with an optimum between 1.1 and 1.3
 - In the digestive tract

Introduction	Material & Methods	Results	Applications	Conclusion			
 No results for particle of 0.5mm size 							
 Quadratic rewith an o In the dig In the run 	esponse of densit ptimum between estive tract men	y 1.1 and 1.3					
time (in hours)			3mm 2mm	Digestive			

Introduction	Material 8	& Methods	Results	Applications	Conclusion
 Response of No effect Increase v 	f mean r for densit with size f	etention ies 1.1 and or densitie	time to size 1.3 s 0.9 and 1.5	-	
	Mean retention time (in hours) 90 - 90 -				.9 .1 .3 .5
		1mm	2mm	3mm	

Size

Introduction	Material &	Methods	Results	Applications	Conclusion
 Response o No effect Increase v 	f mean re for densiti with size fo	etention es 1.1 and or densities	time to size 1.3 s 0.9 and 1.5		
-	Mean retention time (in hours) 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 - 0 -).9 L.1 L.3 L.5
		1mm	2mm Size	3mm	

Particles with density comprised between 1.1 and 1.3 escape faster from the rumen whatever their size

Introduction	Material & Methods	Results	Applications	Conclusion
--------------	--------------------	---------	--------------	------------

- Plastic particles = no fermentation
- Applications to concentrates particles:
 - importance of the surface / mass ratio in the starts of microbial fermentations
 - Small particles loss their density more rapidly due to higher surface / mass ratio
 - Selection occurs at the reticulo-omasal orifice
 - Critical size theory (Poppi et al. 1980): 3-4mm

Particle sizes around 3-4mm will delay the loss of density and allow the passage out of the rumen

Introduction Material & Met	hods Results	Applications	Conclusion
-----------------------------	--------------	--------------	------------

- Quadratic response of density with an optimum between 1.1 and 1.3
 - In the digestive tract
 - In the rumen
- Response of mean retention time to size
 - No effect for densities 1.1 and 1.3
 - Increase with size for densities 0.9 and 1.5

Applications to concentrates

- Feeds with a density between 1.1 and 1.3 and a size around 3-4mm may have the shortest time in the rumen
- Changing the physical characteristics of concentrate particles could increase the efficiency of new protecting processes