

A first approach to predict nitrogen efficiency of dairy cows through milk FT-MIR spectra

C. Grelet¹, E. Froidmont¹, M. Hostens², A. Vanlierde¹, L. Foldager³, M. Salavati⁴, K.L. Ingvartsen³, M.T. Sorensen³, M. Crowe⁵, C.P. Ferris⁶, C. Marchitelli⁷, F. Becker⁸, GplusE consortium⁹ and F. Dehareng¹

¹ CRA-W, Gembloux, Belgium
² Ghent University, Merelbeke, Belgium
³ Aarhus University, Tjele, Denmark
⁴ RVC, London, United Kingdom
⁵ UCD, Dublin, Ireland
⁶ AFBI, Belfast, Northern Ireland
⁷ CREA, Roma, Italy
⁸ FBN, Dummerstorf, Germany
⁹ http://www.gpluse.eu/index.php/project/partners/

c.grelet@cra.wallonie.be

Global objective of GplusE project

Optimise efficiency, fertility, health and environmental footprint of dairy cows:

First step:

Develop models predicting **phenotypes of interest** based on easily-measured and large scale **biomarkers in milk**:

→ Milk MIR spectra → ...

Final steps:

Genomic study : to relate genotype to phenotypes of interest ~15 000 cows

\rightarrow Breeding

Management study: new management strategies at herd and cow level to improve phenotypes of interest ~600 cows

→ Advisory tools

Phenotype of interest : N efficiency

- High cost of protein
 - → Poor N efficiency is affecting profitability (Powell et al., 2010)
- Environmental impact : ammonia and oxides → GHG (Muck and Steenhuis, 1992) leaching in water resources → Eutrophication (Ledgard et al., 1998)
- Potential negative impact on reproductive performances (Butler, 2000)
- Potential negative impact on milk processing quality (Hermansen et al., 1999)

Biomarker : MIR

- Used in routine to predict composition for milk recording and milk payment
- Fast
- Cheap

© Bentley

Milk composition -Fat -Proteins -Urea -Lactose ...

Predict N efficiency by milk MIR?

Genotype plus Environment Integration for a more sustainable dairy production system

Materials & Methods

Experiments

- 3 experimental farms
- Common sampling protocol
- 136 cows

- Holsteins
- **Early lactation:** Calving to DIM 50

	# Cows	PP	MP	MY	Diet 1	Diet 2	Diet 3
AFBI (UK)	62	18	44	31.6	Standard (50% Cc)	High Cc (70% Cc)	Low Cc (30% Cc)
AU (Denmark)	35	11	24	35.5	Standard	Ketosis (High sugar)	Acidosis (High starch)
UCD (Ireland)	39	3	36	30.5	Standard		
TOTAL	136	32	104	32.3			

N Data

- Nitrogen in feed = crude protein content/6.25 (kg/day)
- Nitrogen in milk = total nitrogen/6.38 (kg/day)

N mobilized unknown : efficiency potentially overestimated (and losses underestimated*) for cows mobilizing body proteins in early lactation

*(But N Feed - N Milk correlated at r=0.98 with real N Urine + N Faeces in Olmos-Colmeneros et al., 2006)

MIR data

- Milk samples analyzed locally or at CRA-W (Belgium)
- Twice per week
- AM & PM (weighted average)
- Foss and Delta (standardized: Grelet et al.,2015)
- Merging of spectral data with N data of the same day

MIR calibrations

- Dataset : 1034 data from 131 cows (≈ 8 samplings from DIM0-DIM50)
- No removing of outliers
- Predictors
 - MIR spectra
 - Parity
 - MY
- Method
 - PLS: Partial Least Square Linear method
 - SVM: Support vector machine Nonlinear Method
- Evaluation of the model
 - Cross-validation: 10% of data removed randomly (*A cow can be in calibraton and in validation dataset*)
 - External-cow-validation: 25% of the cows randomly removed (*still similar diets in calibraton and in validation dataset*)
 - External-diet-validation: diets removed one by one.

Genotype plus Environment Integration for a more sustainable dairy production system

Results

Descriptive statistics

Descriptive statistics

• N efficiency distribution (individual data)

Literature averages: Castillo et al., 2000: **8 - 42%** Olmos Colmenero et al., 2006: **25 - 37%** Nadeau et al., 2007: **18 - 40%**

Early lactation: Cowan et al., 1981 (DIM 1 – 112): **35%** Law et al., 2009 (DIM 1 – 151): **39%**

Extreme data→ Individual data vs means at herd/period levels?

High efficiency → Negative N balance in early lactation? (Cowan et al., 1981; Komaragiri & Erdman., 1997; Sutter & Beever., 2000;)

Descriptive statistics

• N efficiency distribution (individual data)

Literature averages: Castillo et al., 2000: **8 - 42%** Olmos Colmenero et al., 2006: **25 - 37%** Nadeau et al., 2007: **18 - 40%**

Early lactation: Cowan et al., 1981 (DIM 1 – 112): **35%** Law et al., 2009 (DIM 1 – 151): **39%**

Extreme data → Individual data vs means at herd/period levels?

High efficiency → Negative N balance in early lactation? (Cowan et al., 1981; Komaragiri & Erdman., 1997; Sutter & Beever., 2000;)

r	N efficiency %
Parity	0.23
DIM	-0.24
Weight (kg)	0.27
Milk Yield (kg)	0.44
Fat milk (%)	-0.04
Protein milk (%)	0.19
N Milk (kg/day)	0.49
DMI (kg/day)	-0.19
Energy Intake (Mcal/day)	-0.15
N Intake (kg/day)	-0.41
Crude Protein	-0.60
Energy Balance (Mcal/day)	-0.65

Low DMI + High MY \rightarrow NEB

 \rightarrow Real N Efficiency or Negative N balance ?

Need for N balance data (urine & faeces)

Genotype plus Environment Integration for a more sustainable dairy production system

Results

MIR calibrations

MIR calibrations – N efficiency (%)

Cross-validation (removing randomly 10% of the data)

 \rightarrow A cow can be in calibration and in validation dataset

1034 data

Method	X predictors	R ² cv	Error (RMSEcv)	Relative error (RMSEcv/mean)
PLS	MIR	0.59	6.6	18%
PLS	MIR+Parity	0.62	6.4	17%
PLS	MIR+Parity+MY	0.72	5.5	15%
SVM	MIR+Parity+MY	0.74	5.3	14%

 \rightarrow Possibility to estimate N efficiency with fair accuracy

SVM model

MIR calibrations – N efficiency (%)

- External-cow-validation (removing randomly 25% of the cows)
- Calibration dataset : 779 data
- External dataset : 255 data

MIR calibrations – N efficiency (%)

- **External-diet-validation** (removing each diet when performing the model)
- Calibration dataset : 6 diets
- External dataset : the removed diet

	Error (RMSEcv)	Relative error (RMSEcv/mean)
Afbi HighCc	6.67	18%
Afbi LowCc	8.13	22%
Afbi Standard	4.38	12%
Au Acidose	6.95	19%
Au Ketose	7.51	20%
Au Standard	5.96	16%
Ucd Standard	12.58	34%
	7.45	20%

- → Models fairly succeed to predict AFBI and AU Standard diets
- → Increased errors for special diets and for UCD herd. Robustness to be increased

MIR calibrations – N losses (kg/day)

- Cross-validation (removing randomly 10% of the data)
 - ightarrow A cow can be in calibration and in validation dataset
- No removing of outlier
- 1034 data

Conclusions

- Preliminary study: results to be validated
- Very early lactation: N balance to validate with urine and faeces data
- Seems possible to predict fairly N efficiency & N losses ($R^2cv \approx 0.74 \& 0.68$) from FT-MIR spectra of milk

BUT:

- Robustness to be increased with other herds \rightarrow collaboration?
- Test in genomic studies
- Test for management strategies

BUT:

• Need to take N (and energy) balance into account

Thank you for your attention!

Acknowledgments and Disclaimer

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 613689

The views expressed in this publication are the sole responsibility of the author(s) and do not necessarily reflect the views of the European Commission.

EAAP – Dubrovnik - 2018

Descriptive statistics

• Characteristics of herds and diets (means)

	FPCM (kg/day)	Protein milk %	DMI (kg/day)	Weight (kg)	EnergyBalance (Mcal/day)	N Intake (kg/day)	N Feed %	N efficiency %	N Losses (kg/day)
Afbi									
HighCc	38.1	3.33	23.5	633	0.73	0.629	2.7%	31%	0.434
LowCc	27.1	2.94	15.4	596	-5.72	0.408	2.6%	32%	0.282
Standard	32.8	3.09	19.8	604	-2.22	0.523	2.6%	30%	0.367
Au									
Acidose	35.7	3.29	20.3	600	-1.21	0.448	2.2%	44%	0.256
Ketose	35.9	3.21	20.2	607	-3.00	0.462	2.3%	39%	0.284
Standard	37.8	3.27	20.6	594	-2.94	0.456	2.2%	44%	0.255
Ucd									
Standard	34.5	2.99	18.5	655	-6.87	0.380	2.0%	42%	0.223

Descriptive statistics

• Really efficient cows of negative N balance?

N Efficiency group	DIM	FPCM (kg/day)	N Milk (kg/day)	DMI (kg/day)	Weight loss w2-w6 (kg)	Energy Balance (Mcal/day)	Protein Feed %	N Intake (kg/day)
- 30%	30	27.31	0.129	19.54	0.83	1.99	16%	0.513
30 -40%	27	35.33	0.173	20.66	1.63	-2.74	15%	0.498
40 -50%	24	37.61	0.189	19.24	-24.96	-6.31	14%	0.427
+50%	21	39.42	0.197	16.48	-18.18	-12.44	13%	0.354

→Need for N balance data (urine and faeces)

