

B. Nielsen¹, T. Ostersen¹, H. Gao², G. Su², J. Jensen², P. Madsen², O.F.Christensen², M. Shirali²

¹SEGES, Pig Research Centre, DK-1609 Copenhagen, Denmark

²Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark

August 29, 2018

introduction ●oo	RR models	Group models	Data o	Results
Introduction				

- Breeding for reduced feed intake is important to
 - reduce cost
 - Preduce CO2 emission
- Individual feed records are costly

Haw can we get more phenotypes?

- Solution: Group records of feed intake
- Problem: How to handle drop out animals

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

introduction ●oo	RR models	Group models	Data ○	Results
Introduction				

- Breeding for reduced feed intake is important to
 - reduce cost
 - Preduce CO2 emission
- Individual feed records are costly

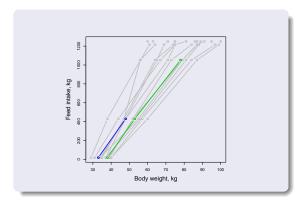
Haw can we get more phenotypes?

- Solution: Group records of feed intake
- Problem: How to handle drop out animals

・ロット (雪) ・ (日) ・ (日)

introduction ○●○	RR models	Group models	Data ○	Results 000000
Feed intake	e of groups			

E.g from 0kg feed to 1200kg feed and individual body weights


Literature

Olson et al. (2006) *J Anim Sci 84:88-92* Su et al. (2018) *Genet Sel Evol 50:42* Shirali, et al. Session 42 (17:45)

introduction	RR models	Group models	Data	Results
000				

Group feed intake and individual body weight gain

introduction	RR models	Group models	Data	Results
		00		

Group feed regressed on individual weight

$$\begin{aligned} y_{jk} &= \sum_{i=1}^{n_{jk}} \mathbf{x}_{ijk}^{T} \alpha + \sum_{m=1}^{d} \beta_{m} \sum_{i=1}^{n_{jk}} w_{ijk}^{m} + \sum_{m=0}^{q} \gamma_{jkm} \sum_{i=1}^{n_{jk}} w_{ijk}^{m} \\ &+ \sum_{i=1}^{n_{jk}} \left(\sum_{m=0}^{s} a_{ijm} w_{ijk}^{m} + \sum_{m=0}^{r} p_{ijm} w_{ijk}^{m} \right) + e_{jk} \\ & \begin{pmatrix} \gamma_{j0} \\ \vdots \\ \gamma_{jq} \end{pmatrix} \sim N(\mathbf{0}, \mathbf{\Gamma} \otimes D), \quad \begin{pmatrix} a_{ij0} \\ \vdots \\ a_{ijs} \end{pmatrix} \sim N(\mathbf{0}, \mathbf{G} \otimes A), \\ \begin{pmatrix} p_{ij0} \\ \vdots \\ p_{ijr} \end{pmatrix} \sim N(\mathbf{0}, \mathbf{P} \otimes \mathbf{I}), \qquad e_{jk} \sim N(\mathbf{0}, n_{jk} \sigma_{e}^{2}) \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○

introduction	RR models	Group models	Data	Results
000		○●	o	000000
Feed cor	nversion in su	b-period		

Growth interval from w_1 to w_2 :

$$f.c._{ij}(\Delta w_{12}) = \frac{y_{ij2} - y_{ij1}}{w_2 - w_1}$$

Genetic variances

$$\Delta \boldsymbol{w}_{s12}^{\prime} \boldsymbol{G} \Delta \boldsymbol{w}_{s12} \quad \text{where} \quad \boldsymbol{\Delta w}_{s12} = \begin{pmatrix} w_2^0 - w_1^0 \\ \vdots \\ w_2^s - w_1^s \end{pmatrix}$$

Breeding values for f.c.ij

$$BV_{ij} = \frac{\boldsymbol{a}_{ij} \Delta \boldsymbol{w}_{s12}}{w_2 - w_1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

introduction	RR models	Group models	Data	Results
000		⊙●	o	000000
Feed cor	nversion in su	b-period		

Growth interval from w_1 to w_2 :

$$f.c._{ij}(\Delta w_{12}) = \frac{y_{ij2} - y_{ij1}}{w_2 - w_1}$$

Genetic variances

$$\Delta \boldsymbol{w}_{s12}^{\prime} \boldsymbol{G} \Delta \boldsymbol{w}_{s12} \quad \text{where} \quad \boldsymbol{\Delta w}_{s12} = \begin{pmatrix} w_2^0 - w_1^0 \\ \vdots \\ w_2^s - w_1^s \end{pmatrix}$$

Breeding values for f.c.ij

$$BV_{ij} = \frac{\boldsymbol{a}_{ij} \Delta \boldsymbol{w}_{s12}}{w_2 - w_1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

introduction	RR models	Group models	Data	Results
000		○●	o	000000
Feed cor	nversion in su	b-period		

Growth interval from w_1 to w_2 :

$$f.c._{ij}(\Delta w_{12}) = \frac{y_{ij2} - y_{ij1}}{w_2 - w_1}$$

Genetic variances

$$\Delta \boldsymbol{w}_{s12}^{\prime} \boldsymbol{G} \Delta \boldsymbol{w}_{s12} \quad \text{where} \quad \boldsymbol{\Delta w}_{s12} = \begin{pmatrix} w_2^0 - w_1^0 \\ \vdots \\ w_2^s - w_1^s \end{pmatrix}$$

Breeding values for f.c.ij

$$BV_{ij} = rac{oldsymbol{a}_{ij} \Delta oldsymbol{w}_{s12}}{w_2 - w_1}$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

introduction	RR models	Group models	Data ●	Results 000000
Data				

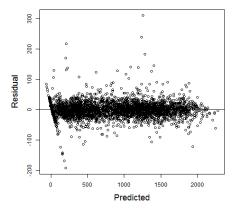
	Number	
Animals	12567	
Groups	1018	
Group size	[7;14]	
Records	3704	
Drop out animals	356	

introduction	RR models	Group models	Data	Results
				•00000

Variance estimates of different models

obs	animals	a11	a12	a22	p11	p12	p22	е
	12567 12599	-	-			-		

* The group record is the sum for the group, and therefore the scale is different

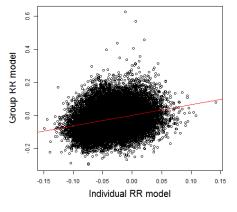

・ロット (雪) (日) (日)

Small groups (<7 animals) were removed

REML estimats by DMU (P. Madsen, 2013)

introduction 000	RR models	Group models	Data ○	Results o●oooo

Residual plot, within groups



3

introduction	RR models	Group models	Data	Results
				000000

Breeding values of group and individual RR models

Corr=0.29

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ● ●

introduction	RR models	Group models	Data ○	Results ooo●oo
Discussion				

- Corr=0.29
- Relation between animals within groups
 - Mean littermates per litter: 1.13
 - More littermates in the same pen led to a higher accuracy of BV (Su et al., 2018)
- More data and higher order might increases accuracy of BV
- Genomic relationship might increase accuracy of BV

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

introduction	RR models	Group models	Data ○	Results oooo●o
Conclusion				

 RR-model on longitudinal group records can be used to predict individual BV's of feed conversion ratio

RR-model can account for drop out animals

introduction	RR models	Group models	Data ○	Results oooo●o
Conclusion				

- RR-model on longitudinal group records can be used to predict individual BV's of feed conversion ratio
- RR-model can account for drop out animals

introduction	RR models	Group models	Data ○	Results ○○○○○●
Conclusion				

- RR-model on longitudinal group records can be used to predict individual BV's of feed conversion ratio
- RR-model can account for drop out animals

Thank You !

・ロット (雪) (日) (日)