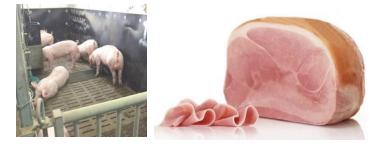


Environmental impacts of pig production systems relying on European local breeds

A.N.T.R. Monteiro⁽¹⁾, A. Wilfart⁽²⁾, V.J. Utzeri⁽³⁾, N. Batorek Lukač⁽⁴⁾, U. Tomažin⁽⁴⁾, L. Nanni-Costa⁽³⁾, M. Čandek-Potokar⁽⁴⁾, L. Fontanesi⁽³⁾, **F. Garcia-Launay**⁽¹⁾

⁽¹⁾ PEGASE, INRA, Agrocampus Ouest, 35590 Saint-Gilles, France
 ⁽²⁾ SAS, INRA, Agrocampus Ouest, 35000 Rennes, France
 ⁽³⁾ University of Bologna, 40127 Bologna, Italy
 ⁽⁴⁾ KIS Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia



Funded by European Union Horizon 2020 Grant agreement No 634476

Conventional pig production

EAAP 2018

Modern highly selected breeds and crossbreeding

Lower global impacts / kg LW Higher local impacts / ha of land

Traditional pig production

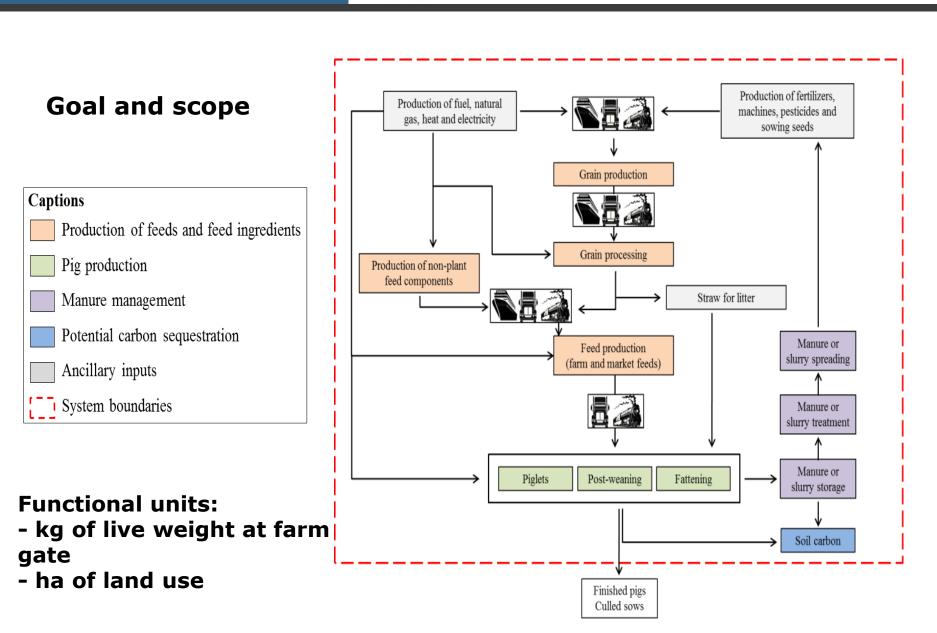
Autochthonous pig breeds and pure breeding

Higher global impacts / kg LW Lower local impacts / ha of land

n=25 WOS n=5

Gaining knowledge on environmental impacts of pig production using local breeds

Funded by European Union Horizon 2020 Grant agreement No 634476


- What are the hotspots for reduction of environmental impacts?
- What are the impacts associated with the use of resources available for outdoor pigs?
- What saving of climate change impact could be achieved through carbon sequestration associated with such systems?

Life Cycle Assessment of pig production in farms raising local breeds in 3 European countries

EAAP 2018

Funded by European Union Horizon 2020 Grant agreement No 634476

Inventory of emissions and resources

- On-farm surveys
- Life Cycle Inventories (LCI) of feed ingredients
 - France → EcoAlim dataset (Wilfart et al. 2016) Slow
 - Slovenia and Italy → LCI adapted with yields and fertilization in each country
- > Nutrient (mainly N, P and K) excretion = intake retention
- > N Retention (Rigolot et al. 2010) with lean % at slaughter:
 - 35% for Gascon breed (Sans et al., 1996)
 - 44 % for Krškopolje breed (Čandek-Potokar et al., 2003)
 - 39 % for Mora Romagnola breed (Fortina et al., 2005).

	Country breed	Farms
	France Gascon	N=25
)	Slovenia Krškopolje	N=15
	Italy Mora	N=8
	romagnola	

Inventory and Characterization

EAAP 2018

- Nutrient intake for grazing pigs
 - Growing-finishing pigs \rightarrow grass intake = f(concentrate supply) with 9 exp.
 - Sows \rightarrow grass intake = 4.49 g DM/kg LW/day (Rivera Ferre et al., 2001)
 - Nutrients contents of pasture from botanical composition and INRA (2010)
- Emissions from pig production
 - NH_3 , N_2O , NO_x , and CH_4 for sows, post-weaning piglets and fattening pigs
 - Outdoor \rightarrow Emission factors from Basset-Mens et al. (2007)
 - Indoor \rightarrow Step-by-step procedure recommended by EMEP/EEA (2016)
- CML method for Global warming Potential (GWP), Acidification (AC),
 Eutrophication (EU), Land Occupation (LO), and Cumulated Energy Demand
 CED V1.8

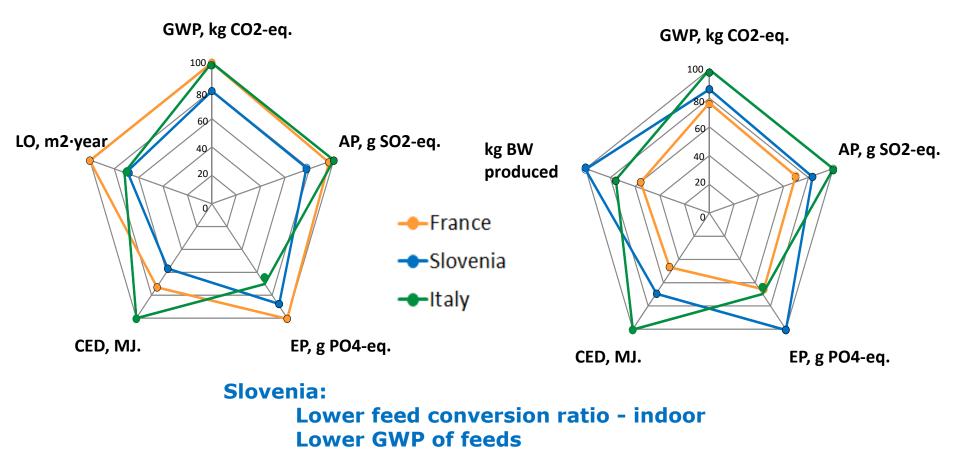
Scenarios

> 2 Scenarios of grass digestibility

EAAP 2018

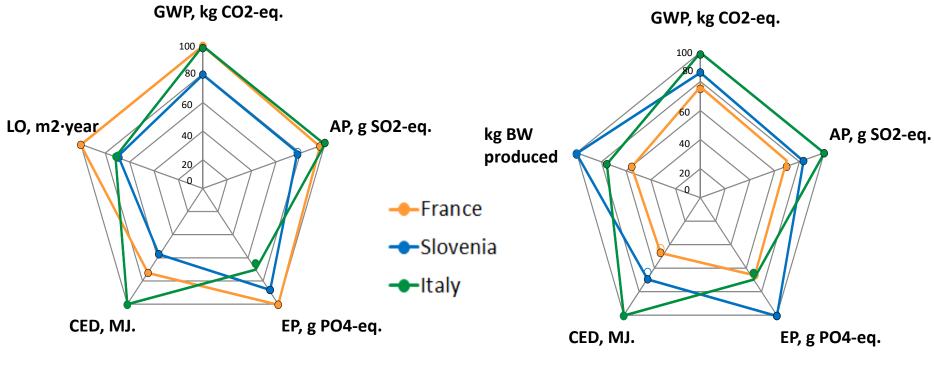
- grass with high digestibility (+25% of the mean) -HighD
- grass with low digestibility (-50% of the mean) LowD
- > 2 scenarios for potential carbon sequestration of permanent pastures
 - Low potential scenario: LowP

200 kg C/ha/year \rightarrow 730 kg CO₂/ha/year (Nguyen et al., 2012)


> High potential scenario: HighP

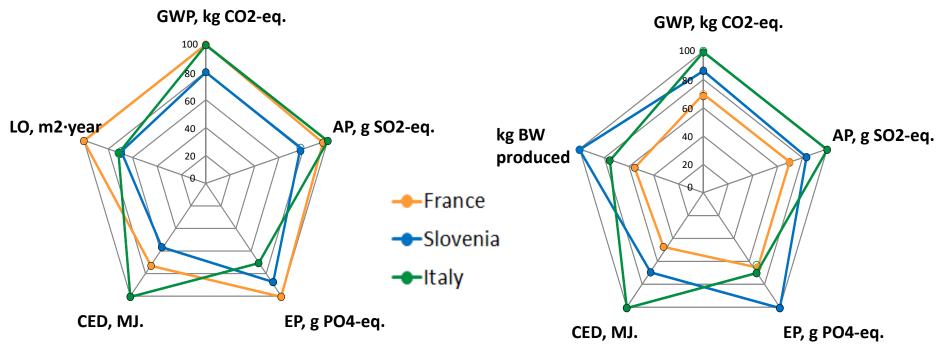
500 kg C/ha/year \rightarrow 1,800 kg CO₂/ha/year (Garnett et al., 2017)

> Impacts per kg LW


> Impacts per ha of land use

> Impacts per kg LW

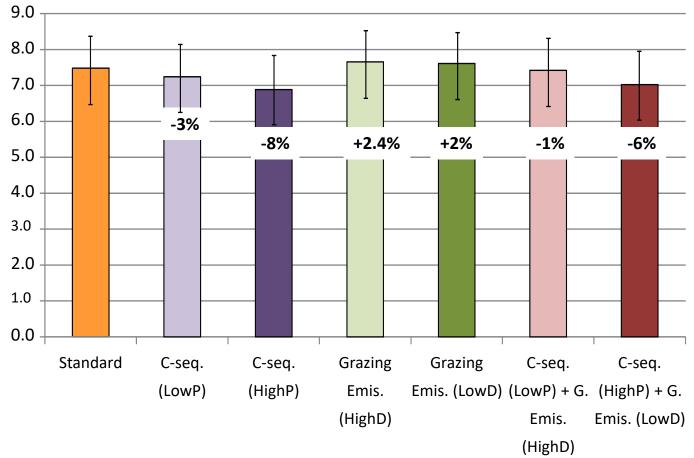
> Impacts per ha of land use


France:

High feed conversion ratio - supply Outdoor fattening

> Impacts per kg LW

> Impacts per ha of land use



Italy:

Higher Crude Protein content of Feeds Soybean meal \rightarrow higher CED of feeds

Global warming potential, kg CO₂-eq / kg LW

France: C sequestration poorly compensates Herbage intake low → poor effect of emissions from grazing

Hotspots

1st Animal performance

Lower feed supply and better FCR Natural resources

2nd Feed composition

Reduction of dietary CP Nutrients from grass Low potential of protein deposition

3rd Environmental impact of feeds

Local feed ingredients Transport

C Sequestration and emissions from grazing

- **1**st Low potential of reduction from C sequestration
- high uncertainty

2nd Emissions from intake of natural resources

uncertainty

3rd Development of emission factor for grazing monogastric animals and better digestibility value of pasture

Funded by European Union Horizon 2020 Grant agreement No 634476

Thank you for your attention !

EAAP 2018

Many thanks to the farmers surveyed in the 3 countries and to the companies that shared their data

ALMA MATER STUDIORUM A.D. 1088 UNIVERSITÀ DI BOLOGNA