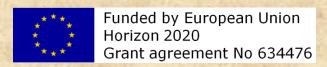


An alternative to restricted feeding in Iberian pigs using an agro-industrial byproduct of olive oil


J.M. García-Casco¹, M. Muñoz¹, M.A. Fernández-Barroso¹, A. López-García¹, C. Caraballo¹, J.M. Martínez-Torres², E. González-Sánchez²

1 Centro de I+D en Cerdo Ibérico, Dpto. Mejora Genética Animal, INIA. 06300, Zafra, Badajoz

2 Escuela de Ingenierías Agrarias Universidad de Extremadura

Background

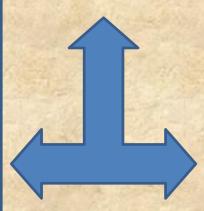
Standard Quality for the Iberian pig products (RD 4/2014) Rules and requirements for

- Breed: pure Iberian and crossbred with Duroc
- Handling and feeding: weights, ages, fattening diets...

Example: montanera's pigs fatted only with acorn

Objective

How growth can be controlled?

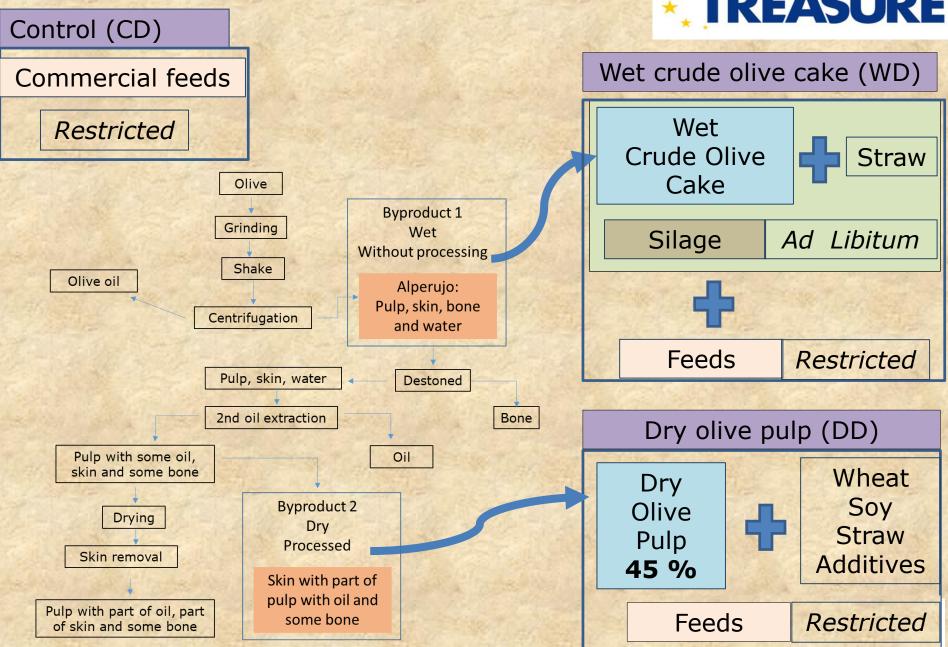

Limiting daily energy intake

Traditional

Alternative

Management: normal diet supplied in small quantity

Low energy concentration diet



How do we achieve it?

High fiber agro-industrial byproduct

Material and methods: diets

Material and methods: growing and fat periods **TREASURE** 15 Control (CD) 45 Iberian 15 Wet crude olive cake (WD) montanera based pigs on the ad libitum intake 15 Dry olive pulp (DD) of acorns and grass Live weight, kg 180 160 140 **Control** 120 100 **Dry pellet** 80 60 Wet form <silage> 20 Growing period 100 150 50 200 300 Days in experiment 42 kg < \rightarrow 162 kg 191 days 119 days

Material and methods: analysed traits

Production

Meat quality traits

Growing W

ADGG

Slaughter W

ADGF

ADGT

Carcass yield

Hams, shoulders and loins yields

Longissimus dorsi:

Water-holding capacity:

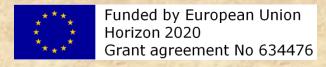
- thaw loss
- cook loss
- centrifuge force loss

Tenderness (Fmax W-B)

Color (L*, a*, b*, hue chroma)

Myoglobine concentration

Marbling


Intramuscular Fat (loin and ham)

Fatty acid profile IMF

Backfat:

Fatty acid profile after

- growing period
- slaughter

* TREASURE

Growth: Restricted feeding and monitoring diet

no effect on final weight of byproduct diets

Carcass traits: no affected by diets

Intakes (group measurement) an economic overview

		Consume		
		kg / day	Cent €/kg	Cent €/ kg lw
Control	Comm. Feeds	1.41	23.8	120.3
Dry	Comm. Feeds	1.90	16.1	119.0
Wet	Comm. Feeds	1.33	28.5	241.3
vvet	Silage	3.00 *	12.0	241.5

Dry byproduct diet is almost equal than control diet

Wet byproduct diet is more than twice expensive than other two diets

But no commercial prices for ensilage (specific elaboration for the trial)

* TREASURE

Quality traits:

Traits:	Mean			SEM	p-value	
Traits.	Control Dry Wet		STATE OF THE STATE			
Thaw Loss	6.43 ^{ab}	7.05°	5.28 ^b	0.296	0.051	
Cook Loss	24.10	23.15	22.07	0.429	0.076	
Centrifugal Force Loss	32.88ª	30.40 ^{ab}	29.02 ^b	0.640	0.016	
Shear Force (kg)	4.22	3.78	3.84	0.162	0.453	
CIELab - L*	40.89 ^{ab}	43.53 ^a	40.61 ^b	0.487	0.032	
CIELab - a*	10.96°	8.95 ^b	10.46°	0.196	0.000	
CIELab - b*	6.28	6.39	6.22	0.124	0.852	
Marbling	2.69	2.72	2.73	0.116	0.984	
Myoglobin	1.93 ^{ab}	1.68 ^b	2.00ª	0.062	0.031	

- ✓ Dry olive pulp-based diets may have a negative impact on meat quality, specifically referring to colour attributes
- ✓ Olive-based silage ad-libitum diets may have positive influence over meat water-holding capacity

* TREASURE

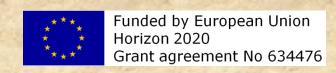
Quality traits: fatty acid profile

Growth	Control	Dry	Wet	Lote R	
C16:0	24.27	22.30	21.70	0.003	E
C18:0	11.39	11.39 8.88		0.000	
C18:1	46.64	- 49.01 -	48.19	0.037	
C18:2	9.43	11.89	11.05	0.000	
Σ SAT	37.71	33.12	34.43	0,001	
Σ MONO	51.08	53.03	52.35	0.117	
Σ POLI	11.21	13.85	13.22	0.000	
Fattening	Control	Dry	Wet	р	
C16:0	19.60	18.94	19.27	0.196	
C16:1	2.25	2.15	2.05	0.414	R
C18:0	8.40	7.71	8.61	0.006	į.
C18:1	55.44	- 56.55	55.41	0.020	To Se
C18:2	8.72	9.22	9.09	0.303	
Σ SAT	29.73	28.32	29.59	0.043	
Σ MONO	59.72	60.60	59.50	0.093	
Σ POLI	10.55	11.08	10.91	0.437	

Diets

	С	Dry	Wet Silage	Wet
C16:0		•	13.9	17.5
C18:0	6.92	3.9	3.7	3.8
C18:1	36.1	59.1	66.0	25.5
C18:2	31.0	19.3	11.5	46.2
Intake	1.41	1.90	3.0	1.33

Quality traits: intramuscular fat (IMF) and total and neutral lipids (IMF)


	Control	Dry	Wet
IMF loin	5.84	5.42	5.91

TOTAL

NEUTRAL

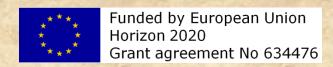
	Control	Dry	Wet	Control	Dry	Wet
C16:0	23.83	24.38	23.91	23.25	23.63	23.07
C16:1	3.89	3.92	3.92	3.98	4.08	4.15
C18:0	10.47	10.57	10.54	9.84	10.02	9.81
C18:1 (n-9)	52.69	52.45	52.06	54.71	54.40	54.32
C18:2 (n-6)	4.72	4.45	5.05	3.30	3.15	3.70
Σ SAT	36.23	36.86	36.41	35.28	35.78	35.15
Σ MONO	57.61	57.39	57.05	60.24	59.94	60.03
Σ POLI	6.16	5.75	6.54	4.48	4.27	4.82

Not significant

Conclusions

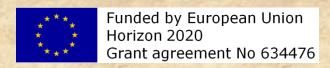
- ✓ A proper feed management along growing period with olive byproduct diets could reach similar productive results than traditional feeding in the growing period
- ✓ But the difference in intakes and in prices of the experimental diets mean that only dry form can be economically competitive
- ✓ Experimental diets during growing period do not produce large changes in meat quality after being subjected to a final montanerafattening period, except for color attributes with the Dry Diet

Conclusions



✓ Silage of olive byproducts can be a very interesting alternative to avoid the negative effects of prolonged restricted feeding for animal welfare:

Animals with silage available all the time (wet diet): feel satiated and more calm, less noisy and nervous


Only an economic evaluation of animal welfare of Wet Diet (silage) can compensate its higher price

Olive byproduct could be a suitable strategy as a new raw material in the Iberian pork feed chain in Iberian pig with rationed nutrition

