

69th Annual Meeting of the European Federation of Animal Science

Dubrovnik, Croatia, 27th to 31st August 2018

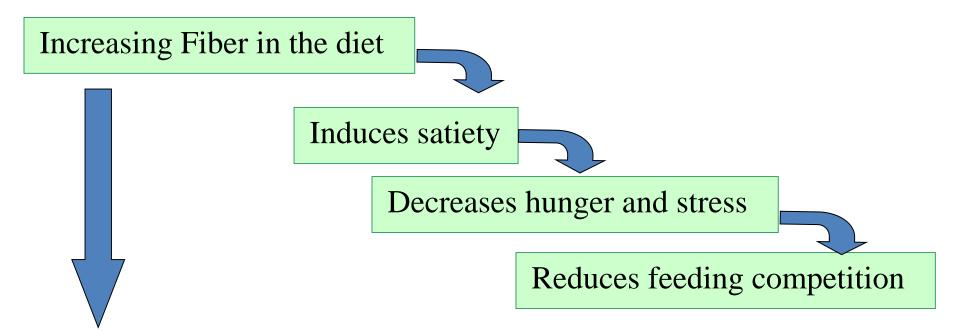
Effects of rice husk supplementation during pre-finishing on production traits of Iberian pigs

Izquierdo, M.¹; Hernández-García, F.I.¹, García-Gudiño, J.²; Matías, J.¹; Garrido, N¹; Cuadrado, I.¹; Pérez, M.A.¹ ¹Center of Scientific & Technological Research of Extremadura (CICYTEX), Spain ²IRTA, Finca Camps i Armet, Monells, Spain

Aim

To evaluate the use of rice husk supplementation during *premontanera* on growth, carcass and fatty acid composition and additionally its effect on animal welfare.

EAAP 2018



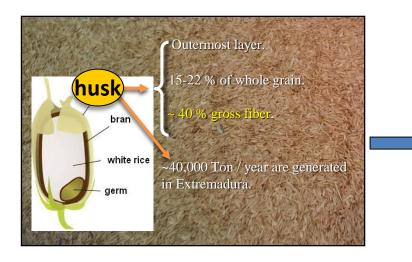
Why is important to increase the ammount on fiber in the iberian pig diet?

~30d	~2m		12m	14-16m
15Kg	~25Kg		110Kg	160Kg
Lactation	Transition (ad libitum)	Prefinishing (restricted)		Finishing (ad libitum)

Using rice husk as welfare fiber could be an interesting alternative use for this abundant and underutilized agricultural byproduct.

Could reduce stress, weight gain variability and might improve carcass uniformity

METHODOLOGY


- 45 castrate male Iberian pigs.
- 3 treatment groups (n=15/group)

• From 9 to 13 months of age (*premontanera*; in large outdoor corrals) were fed 3 concentrate diets (1/group) differing in fiber content:

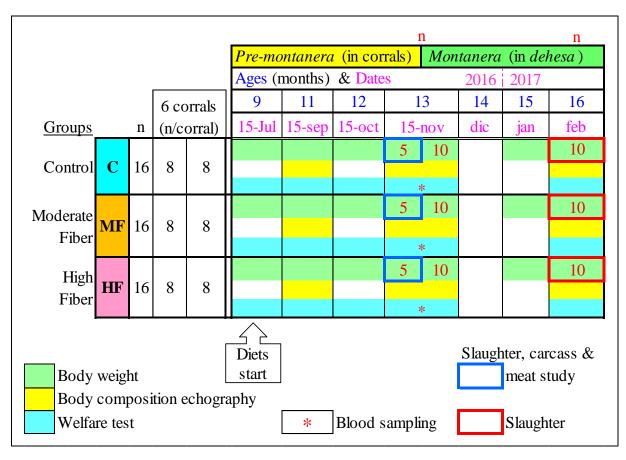
- Control (C; 5.0 %) (regular concentrate),
- Medium Fiber (MF; 8.5 %) (same , but rice husk added)
- High Fiber (**HF**; 12.0 %) (same, but more rice husk added)

• Daily rations were isocaloric and approximately isoproteic.

Composition	Percentage
Ash	11.6 ± 0.1
Protein	2.8 ± 0.1
Gross fibre	39.8 ± 0.5
Cellulose	35.6 ± 0.5
Hemicellulose	14.5 ± 0.8
Lignin	16.1 ± 0.8
Chemical co	omposition of the ash
SiO ₂	93.3 ± 0.4
к ₂ о	3.8 ± 0.1
CaO	1.0 ± 0.02
MgO	0.4 ± 0.01

Table 1: Experimental treatments

Treatment	Diet	Daily feeding rations	
		(kg/animal)	
T1	D1	1.3	
T2	D2	1.4	
Т3	D3	1.5	


Chemical composition	D1	D2	D3
Ash (%)	5.1	5.6	6.6
Crude protein (%)	15.7	14.2	13.0
Fat (%)	2.6	2.9	3.8
Gross fibre (%)	5.0	8.5	12.0
N.D.F. (%)	14.7	18.5	22.9
M.E. (kcal/kg)	3,053	2,775	2,528
N.M.E. (kcal/kg)	2,247	2,073	1,900

Data collection:

• Body weight. *In vivo* ultrasonographic body composition (loin area, gluteus muscles depth, backfat thickness).

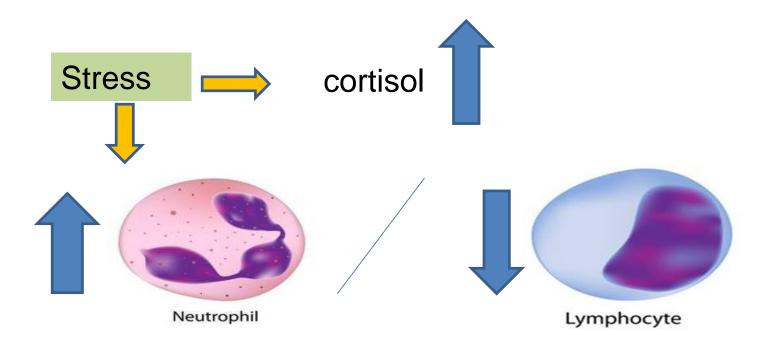
• During premontanera: Welfare Quality® protocol. Behavior.

• At the end of premontanera: Blood sampling: neutrophil/lymphocyte ratio as a chronic stress index (currently under study).

Carcass traits:

•Main cuts weight

•Last rib subcutaneous fat layers


- •Percent Intramuscular fat
- •Fatty acide composition

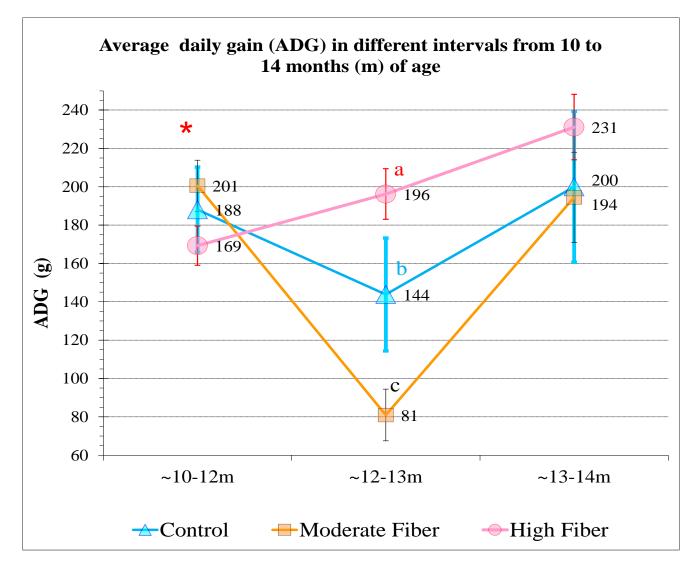
•Blood parameters

Chronic stress index

- Adrenal cortisol release and leukocyte response to stress are tightly linked.

- Several studies indicate that the ratio Neutrophil / Lymphocyte may be an easier way to measure chronic stress, since the ratio doesn't vary as a function of time of the day or sex and it takes hours for elevations in glucocorticoids to result in alteratios in white blood cell population

RESULTS


Table 2. Pig growth parameters for the three treatments

Trait	Control	Medium Fiber	High Fiber	Signif. level	
W1	86.30	88.00	89.00	NS	
W2	99.1 ^b	103.7ª	101.9 ^{ab}	S	W1: Initial weight W2: Second weight
W3	105.90	106.80	110.10	NS	W3: Third weight W4: Last weight
W4	111.7 ^b	111.7 ^b	118.2 ^{a*}		TWG: Total weight gain TADG: Total average daily g
					INDO. Iotai average daily g
TWG	25.4 ^{ab}	23.7 ^b	29.2 ^{a*}	S	
TADG	0.201 ^{ab}	0.188 ^b	0.232ª	S	

* Significantly lower CV for HF group than for Control group

• Mean daily BW gain from the 12th to the 14th month of age was greater for the HF group (significancy at 12-13th & 12-14th month intervals).

• In addition, the HF group exhibited an apparently steadier (in time) and more homogeneous (among animals) growth rate.

Table 3. Pig carcass and meat quality traits for the

three treatments

Trait	Control	Medium Fiber	High Fiber	Signif. level
Ham weight	11.28	11.39	10.96	NS
Foreleg weight	7.95	8.15	8.11	NS
Loin weight	1.65	1.72	1.54	NS
Ham yield	0.24	0.25	0.24	NS
Foreleg yield	0.17	0.18	0.17	NS
Loin yield	0.04	0.04	0.03	NS
Inner backfat-14 th rib	1.33 ^a	0.61 ^b	1.05 ^{ab}	S
Middle backfat-14 th rib				
gm10	1.58 ^a	1.41 ª	2.21 ^b	S
Outer backfat-14 th rib ge10	1.02	0.90	1.02	NS
Total backfat-14 th rib gt10	3.93ª	2.91 ^b	4.28 ^a	S
Intramuscular fat	4.47	3.05	3.15	NS
Meat colour L	34.78	36.25	35.20	NS
Meat colour A	6.86	7.94	7.80	NS
Meat colour B	0.61 ª	1.14 ^{ab}	1.26 ^b	S

Table 4. Pig fatty acid composition for the three treatments

Trait Control Medium Fiber High Fiber Sign. Level. C12 0.0757 0.0726 0.0756 NS C14 1.4258 1.3975 1.4387 NS C16 21.9709 21.8828 21.8083 NS C12: C16.1 2.4055 2.2168 2.4017 NS C14:
C141.42581.39751.4387NSC1621.970921.882821.8083NSC12:C16.12.40552.21682.4017NSC14:
C1621.970921.882821.8083NSC12:C16.12.40552.21682.4017NSC14:
C16.1 2.4055 2.2168 2.4017 NS C14:
C17 0.3391 ^a 0.3541 ^a 0.2828 ^b S C16: C16.1
C17.1 0.3395 0.3307 0.3119 NS C17:
C18 12.0505 12.2571 11.2944 NS C17.1 C18:
C18.1 47.3438 ^{ab} 46.9288 ^a 49.1514 ^b S C18.1
C18.2 11.4481 ^{ab} 12.0343 ^a 10.8216 ^b S C18.2
C10.2 1.12073 1.111148 0.0C20h C C20.1 C20.
C18.3 1.1397 ^a 1.1144 ^{ab} 0.8639 ^b S PUFA C20.1 0.1903 0.1973 0.1924 NS MUFA
$c_{20,2}$ 1 2648 ^{ab} 1 2110 ^a 1 2574 ^b S acids
PUFA 13.8525 ^{ab} 14.3606 ^a 13.0429 ^b S
MUFA 50.2791 49.6736 52.0573 NS
SFA 35.8620 35.9642 34.8998 NS

• Table 5. Blood parameters for the three treatments

Trait	Control	Medium Fiber	High Fiber	Signif. level
WBC	14.26	15.60	14.87	NS
NEU	5.79	5.62	5.85	NS
LYM	7.66ª	8.98 ^b	8.15 ^{ab}	S
N/L	77.27 ^a	63.28 ^b	73.89ª	S
PLT	235.43	278.77	275.38	NS
%NEU	0.41ª	0.36 ^b	0.39ª	S
%LYM	0.54ª	0.58 ^b	0.55ª	S
EOS	0.36	0.30	0.37	NS

WBC: White blood cells;
NEU: Neutrophils;
LYM: Lymphocytes;
N/L: Neutrophils/lymphocytes ratio;
PLT: Platelets;
%NEU: Percentage of neutrophils;
%LYM: Percentage of lymphocytes;
EOS: Eosinophils.

• None of the groups had diarrheic problems, regardless the fiber level.

• Behavior: HF group showed the lowest activity, mainly after daily ration ingestion.

CONCLUSIONS

• Supplementation with high levels of fiber (12%) from rice husk may be useful to favor growth uniformity during *premontanera*. The rice husk silica content (not only the fiber level) may be the cause of some of the beneficial effects (perhaps at the intestinal level).

• Increasing fiber in the diet does not affect prime cut weights or yields but may slightly change meat color.

• High fiber (**HF**) rice husk supplementation may reduce %SFA in fatty acid profile. On the other hand, the **MF** (medium fiber) group had leaner carcasses, greater %PUFA and lower %MUFA than the HF group.

• The MF group had less stress (in terms of N/L index) than the other 2 groups, but the HF group showed the lowest activity, mainly after the ingestion of their daily ration. Maybe the stress level was low for the 3 groups (castrates, enough space, small stable groups).

IMPLICATIONS: New studies testing rice husk fiber with immnunocastration (higher stress level) and comparing with another type of fiber (regular silica content).

Thanks for your attention!!

CICYTEX Team

M. Izquierdo . Hernández-García J. García-Gudiño J.Matías N. Garrido. I. Cuadrado M.A. Pérez