

Physiological and production responses of Tunisian Holsteins cows under heat stress conditions

H. Amamou¹, M. Mahouachi², Y. Beckers¹ and H. Hammami¹

Gembloux Agro-Bio Tech, University of Liège
 High School of Agriculture of Kef, University of Jendouba

Dubrovnik, Croatia, 27th to 31st August 2018

Dairy sector

Genetic resources:
 majority Holsteins 95%

Low adaptive capacity of high-yielding breed

(Rekik et al., 2003; Hammami et al. 2008)

No practical routine genetic evaluation

Climate conditions

- Temperature above the thermo-neutral zone (5 months: 24°C in average)
- Climate change: Increase in average T °

(GTZ, 2007)

- → Adaptation strategies are needed
 - ✓ Including resilience to HS in breeding programs
 - ✓ Phenotypes related to HS

Objective

✓ Describe HS response for production and physiological traits in commercial farms

✓ Identify resilience phenotypes to HS

Experimental site

Thermo-neutral

20 cows/farm

T (°C): 7 to 17

HR (%): 44 to 94

Heat stress

20 cows/farm

T (°C): 24 to 35

HR (%): 21 to 64

Recorded parameters

Temperature and relative humidity: Data logger

Respiration rates (breaths/min): visually counting

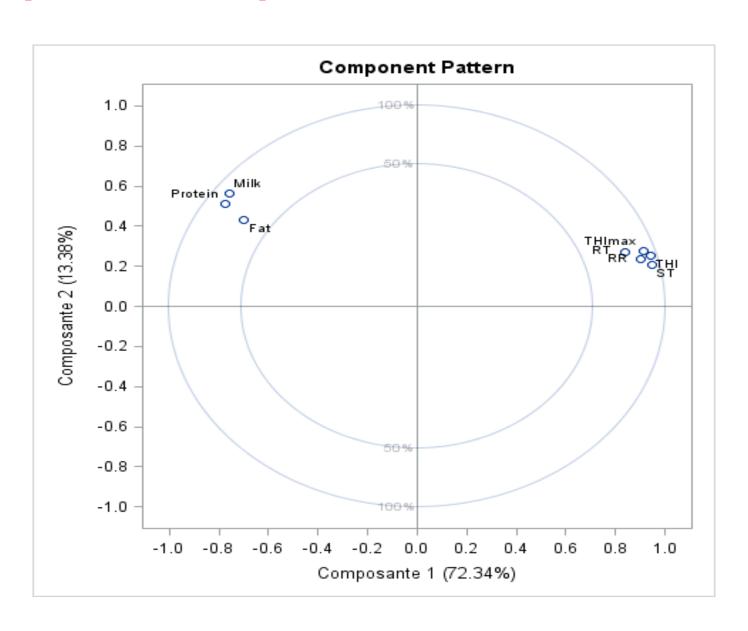
Skin temperatures (°C): infrared temperature gun

Rectal temperatures (°C): digital thermometer

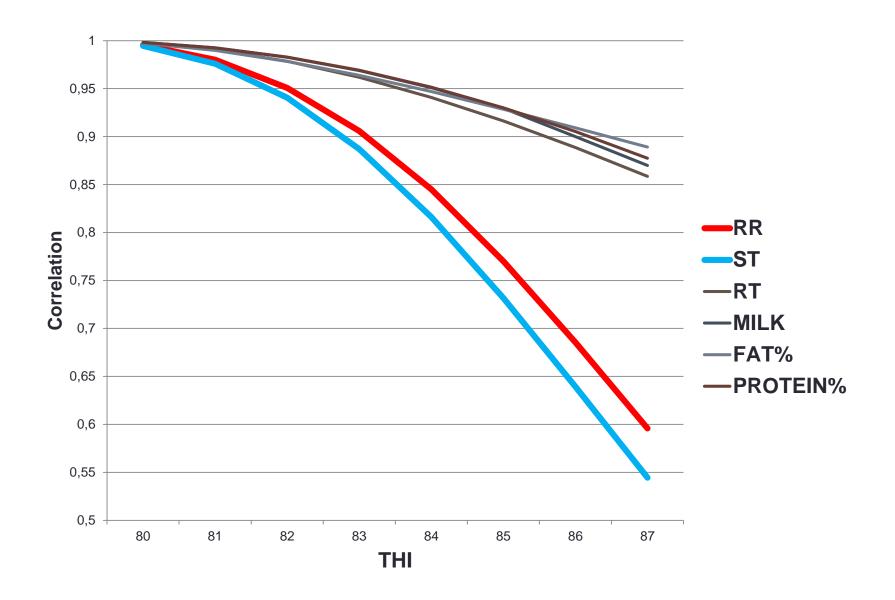
Milk yield and samples

Statistical analysis

- Population response: Mixed models
- > Individual response: Reaction norm model

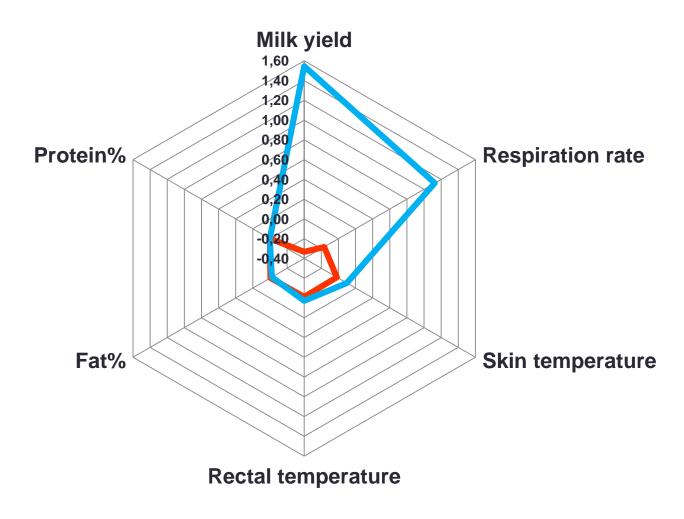

Results

Population Response


Least squares means values of production and physiological traits for dairy cattle

Traits	Thermo-neutral	Heat stress
Physiological traits		
Respiration rate (breaths/min)	26.2a	61.0 ^b
Skin temperature (°C)	28.5a	37.7 ^b
Rectal temperature (°C)	38.3a	39.3 ^b
Milk trait		
Milk (kg)	8.4a	6.5 ^b
Fat (%)	30.3a	17.9 ^b
Protein (%)	27.5a	19.6 ^b

❖ Population Response



❖ Individual Response

Individual Response

Individual deviations of slope from the overall population response

—Sensitive cows —Resilient cows

Conclusion

- Physiological traits ST and RR should be considered as good indicators to quantify the HS level of dairy cows in Tunisia
- At certain extreme level of THI, the RR becomes a good indicator for the ability of animals to dissipate heat
- > In the perspective, this study will be continued to identify novel biomarker in milk that could be highly correlated to RR and ST.

Thank you for your attention

Dubrovnik, Croatia, 27th to 31st August 2018

Statistical Analysis

- Population response to heat stress
 Y= Fixed effects + P + Anim ₊ e
- Principal component analysis (PCA)

- o Individual responses to heat stress $Y = Fixed effects + a_0 + a_{hs} f(j) + e,$ Where a_0 : intercept (TN) a_{hs} : slope (HS)
- Hierarchical classification analysis (HCA)