Development of and Imputation with a SNP map derived from the latest reference genome sequence

Xijiang Yu

Department of Animal and Aquacultural Sciences Norwegian University of Life Sciences

> IHA NMBU, Ås, Norway August, 2018

Background

A linkage map from latest sheep reference genome Results and conclusions

2 A linkage map from latest sheep reference genome

同 ト イ ヨ ト イ ヨ ト

Backgrounds

- High and low density chips are often used together for economic reasons
 - Missing genotypes can be imputed.
- NSG are now trying to adopt genomic selection strategy
- 4,204 Norwegian white sheep were genotyped during the past year
 - 826 genotyped with 600k (HD) chips
 - 3,378 genotyped with 8k (LD) chips

Background

A linkage map from latest sheep reference genome Results and conclusions

Imputation problems

- $\bullet\,$ The imputation concordance rate is only $\sim\,71\%$
 - Using the genotypes and linkage maps from our genotyping company.
 - $\bullet~{\rm Randomly\ mask} < 100~{\rm ID}$ in the HD results
- The problem may be because of:
 - Too few LD loci $(7, 327: 606, 006 \approx 1: 82.7)$
 - Previous work: $8k \Rightarrow 15k \Rightarrow 600k$, still of < 90%
 - The linkage maps may need to be upgraded.

Why the linkage maps can be an issue?

- Different chips may be based on different versions of the reference
 - Some shared SNP are of different chromosome locations on LD and HD maps
- Sheep SNP names may be from different name systems
- Quite a few SNP duplicates

Outlines

2 A linkage map from latest sheep reference genome

同 ト イ ヨ ト イ ヨ ト

My algorithm to construct such a map

• Index the reference

- E.g., ATGCATGC \Rightarrow ATGC:1,5; CATG:4; GCAT:3 TGCA:2
- Note the indices are sorted for faster later searches.
- Index on every 50bp sequences
- Hash all the 50bp segments into integers to save memory
- Look up the initial 50bp hash of a SNP sequence from the index
 - If found, match the rest of the sequence to confirm.
 - Each SNP sequence was searched in 8 ways.

Other concerns

I feel thin... sort of stretched, like butter scraped over too much bread.

Bilbo Baggins / J.R.R. Tolkien

Include as many shared LD loci as possible

- Using SNP flanking sequences instead of their probes
- Many sequences were matched many where in the reference
 Recover them if possible
- After data cleaning, $LD_{shared} : HD \approx 1 : 114.5$

Outlines

2 A linkage map from latest sheep reference genome

同 ト イ ヨ ト イ ヨ ト

Accuracy with recycled SNP

• Only recycle SNP on chromosome 1, 3, 13, 14, 16, 17, 21, 24.

э

Final test imputation results vs the precious

Xijiang Yu Development of and Imputation with a SNP map derived from the

ъ

Conclusions

- Major
 - $\bullet\,$ Concordance rate increased from 71% to 95%+ with the new map
 - A fast algorithm can finish the map within a few hours.
- Minor
 - Beagle 5 gives better results than beagle 3.3.2
 - Removing imputation results on free chromosome ends can further improve accuracy.

伺 ト イ ヨ ト イ ヨ ト