

Evaluation of accelerometer as an effective tool to measure sheep behavior in a pastoral context

GRISOT PG, PHILIBERT A, DROUIN E, DEMARQUET F, AUPIAIS A

- ▶ <u>Issue</u>: adapt technologies(GPS, accelerometer) to the needs of pastoral farmers in order to support their activity and improve the utilization of rangelands.
- ▶ <u>Objective</u>: determine the technical and functional specifications of a tool combining GPS and accelerometer, to be put on the animals
- In the framework of: UMT Pasto & RMT Travail en élevage

Context

- Accelerometer technology not a new tool
 - ▶ Since the middle of the 90's, used to characterise animal behavior
 - ▶ Different animal species especially since 2000 (Shepard et al. 2008)
 - ▶ On sheep in several studies (Mason et al., 2013; Marais et al., 2014...):
 - ▶ Up to 5 behavior identified, on grassland
- Pastoral farming issues
 - ► Efficient pastoral resource management
 - Strong and compact device
 - Good battery operating time
 - Efficient in communications
 - Which individuals to equip?

An applied project, with a variety of partners

Pastoral farming issues

- ► Efficient pastoral resource management
- Strong and compact device
- ► Good battery operating time
- ► Efficient in communications
- ► Which individuals to equip?

WPK 2.1: Evaluation of accelerometer as a tool to characterize animal behavior

Accelerometer

- 3 axis
- $g = 9.81 \text{m.s}^{-2}$
- Acquisition frequency: 100Hz

1.5 days on grassland + 1.5 days on rangeland

3 different animals for each ½ day

Acquisition of data in the field

1.5 days on grassland + 1.5 days on rangeland

3 different animals for each ½ day

Direct observation of 9 types of behaviors

Lying -	Standing -	Standing -
Sleeping	motionless	ruminating
Lying -	Standing -	Standing -
motionless	walking	eating brush
Lying - ruminating	Standing - running	Standing - grazing

Acquisition of data in the field

1.5 days on grassland + 1.5 days on rangeland

3 different animals for each ½ day

Direct observation of 9 types of behaviors

Lying -	Standing -	Standing -
Sleeping	motionless	ruminating
Lying -	Standing -	Standing -
motionless	walking	eating brush
Lying -	Standing -	Standing -
ruminating	running	grazing

Time	Behavior
09:00:07	Standing - Grazing
09:02:00	Standing - Walking
09:02:10	Standing - Grazing
09:02:38 to 09:03:12	Standing - Walking
09:03:29	Standing - Walking
09:04:03	Standing - Grazing
09:05:15	Standing - Grazing

Statistical

treatments

Acquisition of data in the field

-1.0 0.0 1.0 0.00:000

1.5 days on grassland + 1.5 days on rangeland

3 different animals for each ½ day

Direct observation of 9 types of behaviors

Lying -	Standing -	Standing -
Sleeping	motionless	ruminating
Lying -	Standing -	Standing -
motionless	walking	eating brush
Lying -	Standing -	Standing -
ruminating	running	grazing

Time	Behavior
09:00:07	Standing - Grazing
09:02:00	Standing - Walking
09:02:10	Standing - Grazing
09:02:38 to 09:03:12	Standing - Walking
09:03:29	Standing - Walking
09:04:03	Standing - Grazing
09:05:15	Standing - Grazing

Method: combination of Data sets

IUCIC					
Time		Acceleration axis x (g)	Acceleration axis y (g)	Acceleration axis z (g)	Behavior
09:00:05	000	0.53125	0.125	0.75	GRAZING
09:00:05	001	0.53125	0.125	0.75	GRAZING
09:00:05	002	0.5625	0.125	0.78125	GRAZING
•••					
09:00:05	099	0.5625	0.09375	0.78125	GRAZING
09:00:06	000	0.5625	0.09375	0.78125	GRAZING
•••					
09:00:06	099	0.53125	-0.125	0.7735	GRAZING
09:00:07	000	0.53125	-0.125	0.75	GRAZING
•••					
09:00:09	099	0.53125	-0.125	0.7735	GRAZING
09:00:10	000	0.53125	-0.125	0.75	GRAZING
•••					
09:01:59	099	0.475	-0.09375	0.78125	GRAZING
09:02:00	000	0.475	-0.225	0.75	WALKING
09:02:00	001	0.325	0.375	0.75	WALKING
09:02:09	099	0.5625	0.375	0.75	WALKING

09:02:09

099

0.5625

Method: combination of Data sets

Time		Acceleration axis x (g)	Acceleration axis y (g)	Acceleration axis z (g)	Behavior
09:00:05	000	0.53125	0.125	0.75	GRAZING
09:00:05	001	0.53125	0.125	0.75	GRAZING
09:00:05	002	0.5625	0.125	0.78125	GRAZING
•••	•••				•••
09:00:05	099	0.5625	0.09375	0.78125	GRAZING
09:00:06	000	0.5625	0.09375	0.78125	GRAZING
•••					
09:00:06	099	0.53125	-0.125	0.7735	GRAZING
09:00:07	000	0.53125	-0.125	0.75	GRAZING
•••	•••				•••
09:00:09	099	0.53125	-0.125	0.7735	GRAZING
09:00:10	000	0.53125	-0.125	0.75	GRAZING
•••	•••				•••
09:01:59	099	0.475	-0.09375	0.78125	GRAZING
09:02:00	000	0.475	-0.225	0.75	WALKING
09:02:00	001	0.325	0.375	0.75	WALKING
•••	•••				•••

0.375

0.75

WALKING

Method: Statistical treatments with the Random Forest algorithm

- ✓ Treatment of a pool of 3500 x 5-second segments with only 1 behavior.
- ✓ Data analysed: 100Hz and 25Hz
- CART method: Classification and Regression Tree
 - Classifies segments in subsets to discriminate them
 - ✓ At every node of the tree, the algorithm looks for the best statistical variable to discriminate segments and to divide them in 2 subsets (according to this variable)

Method: Statistical treatments with the Random Forest algorithm

- ✓ Treatment of a pool of 3500 x 5-second segments with only 1 behavior
- ✓ Data analysed: 100Hz and 25Hz
- CART method: Classification and Regression Tree
 - Classifies segments in subsets to discriminate them
 - ✓ At every node of the tree, the algorithm looks for the best statistical variable to discriminate segments and to divide them in 2 subsets (according to this variable)

✓ Random Forest:

- ✓ 500 regression trees, 3500 segments per tree (sampled with replacement), 6 variables per tree
- ✓ 18 variables to discriminate segments (median, average, standard deviation, min, max, ...)
- Output: rate of success in segment classification

Results: rate of success in segment classification

Grassland and rangeland data, 25Hz frequency

Behavior observed	Number of analysed segments	% of good predictions	Confusions with
Lying - sleeping	1415	94.8	Lying - motionless
Lying - motionless	2362	92.9	Lying - ruminating
Lying - ruminating	1658	90.7	Lying - motionless
Standing - grazing	5024	98.0	
Standing - ruminating	292	67.5	Lying - ruminating
Standing - eating brush	9	0.0	Standing - grazing
Standing - motionless	244	28.7	Standing - grazing and Lying - motionless
Standing - walking	132	62.1	Standing - grazing
Standing - running	117	73.5	Standing - walking

- → 92.4 % of segments correctly predicted
- → Confusions between some behaviors

Results: rate of success in segment classification

Grassland and rangeland data, 25Hz frequency

Behavior observed	Number of	% of	Confusions with
	analysed segments	good predictions	
Lying - sleeping	1415	94.8	Lying - motionless
Lying - motionless	2362	92.9	g g
Lying - ruminating	1658	90.7	Fraguency
Standing - grazing	5024	000 HZ	Frequicted
Standing - ruminating	292	with Took	Lying - ruminating
Standing - eating brush	i silar result	nents corres	Standing - grazing
Standing - motion	Similar of segr	28.7	Standing - grazing and Lying - motionless
Standing - wa	92.5 /0 5	62.1	Frequency Frequency Standing - ruminating Standing - grazing Standing - grazing and Lying - motionless Standing - grazing
Standing - run	117	73.5	Standing - walking

Conclusions

- ▶ 25 Hz vs 100 HZ: same results → reduce the data volume
- ▶ 92.4 % of good prediction → very good prediction for lying and grazing behaviors
- ▶ To be done next:
 - ► Improvement of the algorithm with new sequences (rangeland pasture)
 - Validation of the algorithm on other flocks and other kinds of pastures
 - Determination of the number of segment per minute (or per hour) necessary to predict correctly the behavior

Perspectives

- ► Efficient pastoral resource management
 - ▶ For pastoral farmers, combined to GPS data:
 - ► Better rangeland management
 - ► Alerts: dangerous areas or abnormal behavior (predator attack)
- Strong and compact device
- Good battery operating time
- Efficient in communications
- Which individuals to equip?

Thank you!

