ABACUSBIO LIMITED

Make a difference to food production internationally using science & technology

The value of information from commercial livestock in multi-tier sheep breeding schemes

B. Santos, J. Van der Werf, J. Gibson, N. Jopson, F. Hely and P. Amer

EAAP 2018 69th Annual Meeting of the European Federation of Animal Science Dubrovnik, Croatia, 27th to 31st August 2018

Background

Accuracy doesn't make the world go round

Accuracy doesn't make the world go round

Background

Multi-tier breeding structure

Background

Multiplication power

1 nucleus ewe leads to 250 lambs born

1 nucleus pig leads to 2500 saleable pigs

1 pedigree selection leads to 50 million broilers

Hypothesis

Commercial performance records and genotypes can be used to

- reduce the lag between tiers (increase differential)
- increase prediction accuracy (N and M)
- account for effects of GxE

These could generate production and economic benefits

Dissemination – genetic lag

DISSEMINATION – SELECTION DIFFERENTIAL

Genetic lag vs selection differential

50% selected + 266 Index units (\$)

5% selected + 687 Index units (\$)

Increase prediction accuracy in nucleus

GxE

Methodology

Breeding schemes with

- Nucleus with 1,000 ewes
- 3,000 to 5,000 multiplier ewes
- 150,000 commercial ewes

Scenarios combining different strategies

- Breeding objectives (NZ meat and AUS wool)
- Genotyping strategies
- Levels of GxE

Methodology

Deterministic simulation model

Uses commercial information

- calculates selection differentials and accuracy
- selection index theory, traits genetic parameters and economic values
- implements two-stage selection

Gene flow

• recursive equations

Methodology

Calculation of accuracy in the Nucleus based

Results -return from shortening the lag

Results – Accuracy of prediction in Nucleus

Accuracy increases with higher number of commercial individuals tested

Evidence of GxE (CPT sites)

Scale GxE (CPT sites)

Partial Results - GxE (Heritabilities)

Heritability estimates for different traits across five CPT sites.

	Maternal						Growth			Carcass
Flock	NLB (lambs)	BCS (score)	DAG (score)	FE (GGT21)	FW12 (kg)	WormFEC (%)	WWT (kg)	LWT8 (kg)	EWT (kg)	VS Leg (kg)
3385	0.1178	0.205	0.295		0.5470		0.1666	0.1816	0.1632	0.4646
3400 (0.0763	0.2151	0.0247		0.5259	(0.3386	0.3199	0.2532	0.4423
4640	0.1044	0.2259	0.2122	(0.3904)	0.1652	0.2926	0.2048	0.4186
4757	0.0846	0.3343	0.2093		0.5504		0.1947	0.2113	0.4052	0.3277
9153	0.0843	0.1107	0.0432		0.5583		0.1021	0.1637	0.1288	0.3841

Results - Accuracy of prediction across tiers

Results - Cumulative Net Present Value (return)

higher returns (CNPV), more value in commercial information in higher GxE situation

Results - Contribution to total genetic gain

Important contribution of both Nucleus and Multiplier rams

Commercial information, biggest impact to increase N accuracy

Records/genotypes can be used to reduce impacts of GxE

- Value in linking wider range of candidates, genetic gain and \$ returns

build integration

- throughout livestock industries
- performance records
- genomic relationships

Implications

better selection

• elite sires/strains/lines across environments

Solutions for GxE impact

- SNP effects, environment definition
- scale effect
- INDEX SOLUTIONS

Acknowledgements

John Yates

Dr Jo Conington