

RNA based amplicon sequencing: an emerging approach to study diet related shifts in rumen microbiota

Session 58: Non-invasive biomarkers in nutritional studies

N. Amin, B. Cardazzo, L. Carraro and L. Bailoni

Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Italy

Email: nida.amin@phd.unipd.it

EAAP 2018

69th Annual Meeting of the European Federation of Animal Science Dubrovnik, Croatia, 27th to 31st August 2018 INTRODUCTION

RESULTS

CONCLUSIONS

- Among livestock, ruminants are major methane producers
- Several factors influence methane production by ruminants

Diet & Breed

- Understanding rumen microbiota composition under different dietary treatments is essential to
 - ≻ reduce CH₄ emissions
 - > improve animal health & production
- Majority of rumen microbes are uncultivable in laboratory
- Next generation sequencing (NGS) allows quick & efficient analysis of microbial communities

- Majority of published data on rumen microbiota are DNA-based
- DNA-based methods are unable to distinguish between genes stem from live cells or dead cells
- RNA-based methods provide the opportunity to study potentially active microbiota

These methods can be applied to invasive samples

- rumen fluid collected by esophageal probe or cannula
- And non-invasive samples
- > buccal fluid, chewed bolus or faeces

INTRODUCTION OBJECTIVES MATERIA

RESULTS

CONCLUSIONS

1. Monitoring 6 lactating Italian Simmental cows during 2 different physiological stages & dietary treatments

Late lactationDry Period

- 2. Rumen fluid collection during each stage and extraction of RNA
- 3. Next generation sequencing (NGS) to analyze **diet dependent shifts** in the **metabolically active rumen microbiota**

Italian Simmental cow

Experimental setup

6 Italian Simmental cows (148 to 203 days in gestation) 1st rumen fluid collection Collect

Late lactation (248 to 332 DIM) Forage: Concentrate (54:46)

DIET	as fed (kg)	% of DM
<mark>Corn silage</mark>	<mark>28</mark>	<mark>47.4</mark>
<mark>Alfalfa hay</mark>	<mark>4.0</mark>	<mark>17.4</mark>
Meadow hay	3.0	13.1
Protein mix	2.5	10.7
Vit-min mix	0.3	1.4
Energy mix	<mark>2.1</mark>	<mark>8.9</mark>
Extruded	0.25	1.1
linseed		
Total	40.2	100.0

Dry period (2-52 days before calving) Forage: Concentrate (73:26)

DIET	as fed	% of
	(kg)	DM
<mark>Corn silage</mark>	<mark>7.0</mark>	20.3
Wheat straw	<mark>5.0</mark>	<mark>37.8</mark>
Meadow hay	3.3	24.6
Protein mix	2.2	16.1
Vit-min mix	0.15	1.2
Total	17.7	100.0

Bacterial and Archaeal microbial community profile

i. Phylum level comparison of active bacterial communities

ii. Genus level comparison of active archaeal communities

iii. Phylum & genus level comparison of active protozoal communities

iv. Total protozoa number in late lactation and dry period

The results of this study have shown

- i. A clear effect of different diets on rumen microbiota composition
- ii. Dry period diet resulted in higher abundance of methanogenic microorganisms
- **Future perspective:**
- Microbial programming by controlling feeding managements in early life that persisted in later life
- Therefore, more research is needed to gain insight into the rumen microbiota composition under different dietary treatments

THANK YOU FOR YOUR ATTENTION

Late lactation Cow

Dry Cow