

Planning tool for calculating carbon footprint of milk and meat

L. Mogensen, T. Dorca-Preda, M.T. Knudsen, N.I. Nielsen^{*}, T. Kristensen

Aarhus University, *SEGES, Denmark

Background

Carbon footprint of meat from Holstein bull calves

(Mogensen et al., 2016)

Aim I

The aim with this tool: the carbon footprint (CF) is calculated as the sum of the major GHG contributions:

- feed production
- enteric methane emissions
- emissions related to manure management and
- other smaller contributions

The most important input data to the tool is the planned feeding per animal per day (kg DM) and technologies used for manure management.

Aim II

- At the moment testing of the tool
- Next step is implemented the carbon footprint of feeds in the Danish 'NorFor model', which is a ration formulation tool used on commercial dairy and beef farms for optimization of nutritional and economic parameters and – in the future also climate parameters at the same time.

Methods Life cycle assessment (LCA)

Materials and methods

Life cycle assesment (LCA)

Impact categories

Methods Enteric methane emission

Young stock:

 CH_4 (MJ/d) = (-0.046 * conc. share + 7.1379)/100* GE

Where: Conc. Share: proportion of concentrated feed as % of DM, GE: gross energy (MJ per day)

Cows:

CH4 (MJ/d) = 1.39*DMI-0.091*FA

Where: DMI: dry matter intake (kg DM per day) and FA: fatty acids (g per kg DM)

(Nielsen et al, 2013)

Environmental impact of feed

Carbon footprint of oat from farm

g/CO₂/kg DM oat

Carbon footprint per kg DM feed, g CO_2

Effect on biodiversity loss

PDF = potential disappeared fraction

Crop		Plant species	PDF
Annual crop, not grass	Conv.	6	0.68
	Organic	14	0.29
Grass in rotation	Conv.	18	0.09
Natural forest, EU		20	0
Grass in rotation	Organic	22	- 0.12
Permanent pasture	Conv.	25	- 0.23
	Organic	27	- 0.34
Nature pasture		27	- 0.34

(Knudsen et al., 2017)

Biodiversity loss per kg DM feed, PDF-index

Methods

Manure management

Manure excretion:

N ex animal = N in feed – (N in milk N in gain + N in embryo)

Emissions from Manure management

Exampel 100 kg N ex animal as slurry

Emissions from manure handling	kg CO ₂ -eq.
N ₂ O-N direct, NH ₃ -N, N ₂ O-N indirect	1171
C sequestration from manure	- 287
N from manure stored in soil -> avoided leaching	- 17
Total GHG from manure handling	867
Avoided fertilizer production	
Fertilizer value of manure	- 418
Avoided fertilizer emission	-574
Total GHG from avoided fertilizer production	-992
GHG from 100 kg N	-125

Design of the planning tool

	INPUT OF DATA			RESULTS
GUIDE]		
How to use the model?	INPUT DATA Herd description Production levels Housing of animals Manure management Area and cultivated crops	FEEDING PLANS Setup of summer, winter and corresponding annual feeding plans for all categories of anin Estimation of excreted m and methane emissions enteric fermentation.	anure from	HOME-GROWN FEED Estimation of C sequestration, emissions, N and P leaching. Estimation of environmental impact per 1 cultivated ha and per kg DM
-				
				MANURE MANAGEMENT
BACKGROUND DATA				Estimation of emissions related to excreted manure during housing and storage (and application).
Factors used for estimation of Factors used for estimation of Factors used for estimation of Parameters related to cattle pr Environmental impact of input Factors used for estimation of	emissions from manure emissions taking place during crop production piodiversity damage oduction s used in cattle production systems LUC emissions			Estimation of impact of the different technologies
	ENTER ON A LEVEL AND A CE O			OVERVIEW
PEEDSTUFFS TABLE DM content, energy valu (SFU, gross and net energy crude protein, phosphor crude fat, carbohydrates, fa acids, ash, neutral deterge fibre and starch conte digested organic matter %.	es Impact categories: (), Global warming potential, eutrophi energy use, <u>biodiversiv</u> damage, lan nt t, For: bought-in and home-grown fee	ication, id use. ed.		

The four rations for cows with 10.500 kg ECM

- A: Standard ration
- B: By-products, brewers grain & sugar beet pulp
- C: Roughage from maize silage
- D: Feeds with low carbon footprint (CF)

Composition of rations (157 MJ NEL)

kg DM/day	A Standard	B By-products	C Maize	D Low CF
Barley	3.8	2.7	2.7	
Wheat				3.9
Rapeseed cake	3.7	4.0	4.5	2.2
Soybean meal	1.0	1.0	1.1	
Sugar beet pellets	1.3		1.3	
Grass clover silage	5.0	3.0	3.1	13.4
Maize silage	8.9	9.0	11.0	
Brewers grain		2.0		2.0
Sugar beet pulp		2.0		2.0
Fat				0.4
Total	23.7	23.7	23.7	23.9
Roughage, % DM	58	51	59	56
Fatty acids,g/kg DM	27	34	29	45

Environmental impact of the rations

	A Standard	B By-products	C Maize	D Low CF
Methane, g CH ₄	550	539	545	522
Methane, g CO ₂ -eq.	13750	13475	13625	13050
Δ, %		-2	-1	-5
Feed production, g CO ₂ -eq	11090	9608	10996	9529
Δ, %		-13	-1	-14
Total, g CO ₂ -eq.	24840	23083	24621	22579
Total, g CO ₂ -eq./kg ECM	677	629	671	615
Δ, %		-7	-1	-9
Land use, m ²	32	28	31	27
Δ, %		-12	-3	-16
Biodiversity loss, PDF-index	18.3	17.2	18.9	8.7
Δ, %		-6	+3	-52

Conclusion

 Overall, the planning tool can support practical implementation of carbon reduction measures at the farm level.

Thank you for your attention