

Whole-farm systems modelling of greenhouse gas emissions from suckler cow beef production systems

> S. Samsonstuen¹, B. A. Aaby¹, L. Aass¹ 30.08.2018

¹ Norwegian University of Life Sciences, Faculty of Biosciences, Aboretveien 6, 1432 Ås, Norway.

Background

- The global population is expected to exceed 9.7 billion by 2050¹
- Increase global food production by 50%¹
- Limited arable land reserves
- Natural resources available for food production vary considerably between countries

Background

- Grass production accounts for 2/3 of cultivated area
- 55% of food production on energy basis
- Increased utilization of domestic grassland and pastures
- Reduce greenhouse gas (GHG) emissions 40% by 2030
- Need for a flexible emission farm scale model adapted to production systems and national resources in Norway

Developing HolosNorBeef

carbon pools

Abstract

Input

Data material

Farm data - 2 locations (A and B)

- -Areas and yield (silage and cereals)
- -Silage quality
- -Soil and weather data
- -Fuel, electricity
- -Pesticides, fertilizer

Farm characteristics (unit)	Α	В
Farm size ² (ha)	44.6	41.5
Pasture and ley area ² (ha)	38.9	40.1
Silage yield ²³ (FUm/ha)	3020	3190
Silage nutritive value ² (FUm)	0.87	0.84
Cereal area ² (ha)	7.7	0.9
Cereal yield ² (FUm/ha)	5260	3600
Electricity ² (kWh/year)	26300	29100
Fuel ² (L/year)	3855	2947
Preservatives ² (NOK)	6293	440

2) NIBIO 2016 3) Eurofins

British (Angus/Hereford) Continental (Charolais/Limousin/Simmental)

- -Stilbirth, proportion twins, death<180 days
- -Replacement rate
- -Weights (birth, weaning, slaugther, adult)
- -Age (weaning, slaugther, first calf,...)
- -Proportion concentrates
- -Proportion pasture

Animal characteristics (unit)	British	Continental
Cows, average final LW ⁴ (kg)	600	800
Heifers, birth weight ⁴ (kg)	38	42
Heifers, weaning weight ⁴ (kg)	251	295
Heifers, age at slaughter ⁵ (months)	18.2	17.5
Heifers, age at first calving ⁵ (months)	26.0	28.9
Young bulls, birth weight ⁴ (kg)	40	45
Young bulls, weaning weight ⁴ (kg)	269	322
Young bulls, age at slaughter ⁵ (months)	17.5	16.8
Heifers carcass weight ⁴ (kg)	206	244
Young bulls, carcass weight ⁴ (kg)	291	353
Beef produced ⁵ (kg carcass)	7699	9635

4) Aby et al 2012 5) Animalia 2016

Total emissions (CO₂ eq)

Emissions ($CO_2 eq$) - location

Emissions $(CO_2 eq) - breed$

Emission intensities (kg CO₂ eq/kg beef)

	Α		В	
	British	Continental	British	Continental
Direct kg CO ₂ per kg beef carcass	21.4	19.4	22.9	20.7
Total kg CO ₂ per kg beef carcass	26.2	23.5	27.8	24.8

Emission intensities (kg CO₂ eq/kg beef)

	Α		В	
	British	Continental	British	Continental
Direct kg CO ₂ per kg beef carcass	21.4	19.4	22.9	20.7
Total kg CO ₂ per kg beef carcass	26.2	23.5	27.8	24.8

Intensive system ⁶ : 25.4	*	Average farm ⁷ : 22
Intensive system ⁶ : 23.1 Extensive system ⁶ : 29.7		Average farm ⁸ : 23.1 6) Mogensen et al 2015 7) Beauchemin et al 2010 8) Foley et al 2011

Conclusions

- Emission intensities of the same magnitude as the other Nordic countries
- The Continental breeds have higher total emissions, but lower emisson intensities
- Location important to consider
- Emissions varies between location and breed
- Average inputs
- Expect large variation between individual farms

Next step: 30 commercial suckler cow farms

Thank you for your attention!

