

Early-programming of dairy cattle, a potential explanation to the adaptation to climate change

H. HAMMAMI^{1,3}, F.G. COLINET¹, C. BASTIN², S. VANDERICK¹, A. MINEUR¹, S. NADERI¹, R.R MOTA¹, N. GENGLER¹

Gembloux Agro-Bio Tech, ULiège, B-5030 Gembloux, Belgium
 Walloon Breeding Association, awé, B-5090 Ciney, Belgium
 hedi.hammami@uliege.be

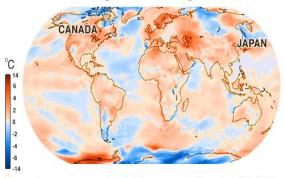
Context: Epigenetics

Opportunities in dairy cattle

- > Human disease and prevention (e.g. cancer)
 - Genetic make-up of disease development (or not)
 - Early programming (e.g. epigenetic diets)

Michael Daniel, and Trygve O. Tollefsbol J Exp Biol 2015;218:59-70

- Those studies can be explored dairy cattle:
 - Identify practices associated to epigenetic changes
 - Detect genotypes with reduced susceptibility to epigenetics



G x E & Epi-Genome Wide Studies

Challenges: adaptation to climate

- ➤ Heat stress (HS):
 - Temperate regions

 Where in the world temperatures are above and below average for 1-20 July

Temperatures are measured against the average for the period 1981-2010

Source: Copernicus Climate Change Service, European Centre for Medium-Range

Weather Forecasts

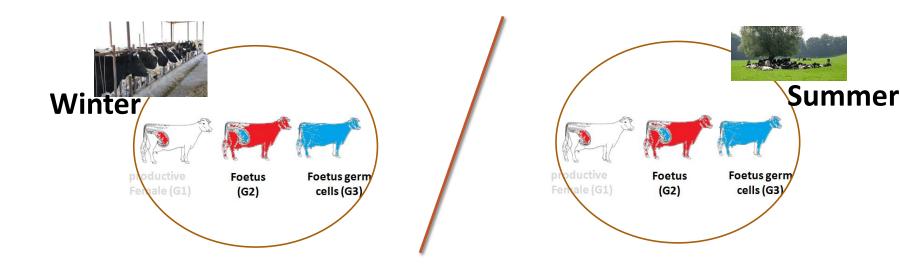
RESEARCH ARTICI

Periconceptional Heat Stress of Holstein Dams Is Associated with Differences in Daughter Milk Production and Composition during Multiple Lactations

Britni M. Brown¹, Jon W. Stallings², John S. Clay³, Michelle L. Rhoads¹*

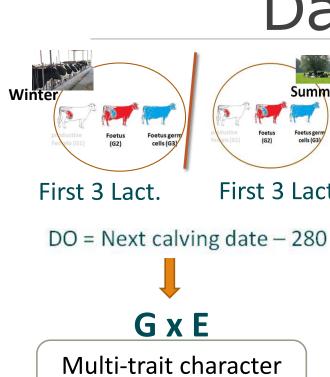
Season of conception is associated with future survival, fertility, and milk yield of Holstein cows

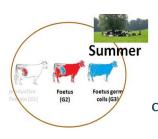
P. J. Pinedo*1 and A. De Vries†



Evidence that season of conception affects offspring lifetime

Mainly at the phenotypic level


Objectives

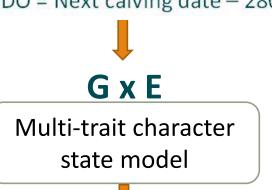

> G x HS exposure during the fetal development period

➤ Characterize **genomic regions** responsible for HS exposure at early life as affecting lifetime fertility

Data & models

First 3 Lact.

Conception date (CP) = date of birth - 280



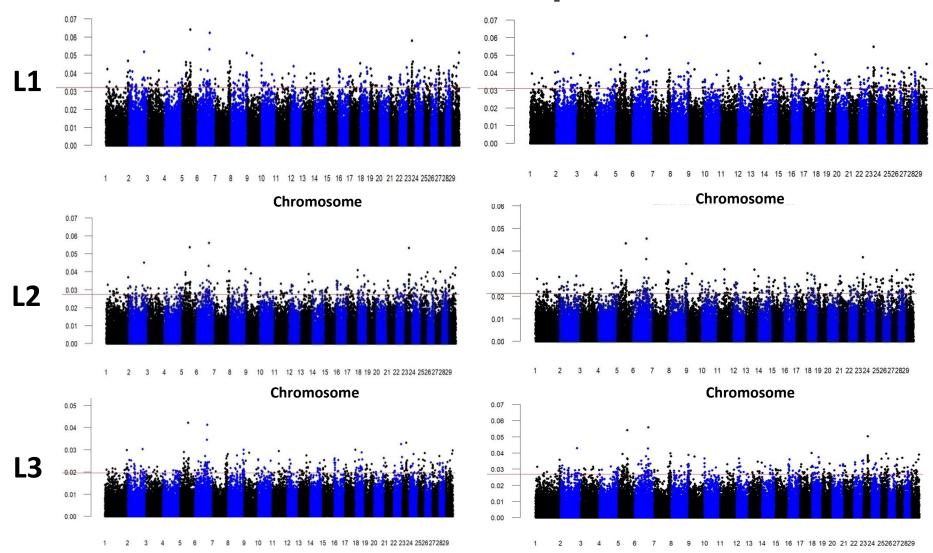
productive Female (G1) 399,449 TD records linked to THI values 83,502 first-3 lact.

2957 animal Genotypes (50K)

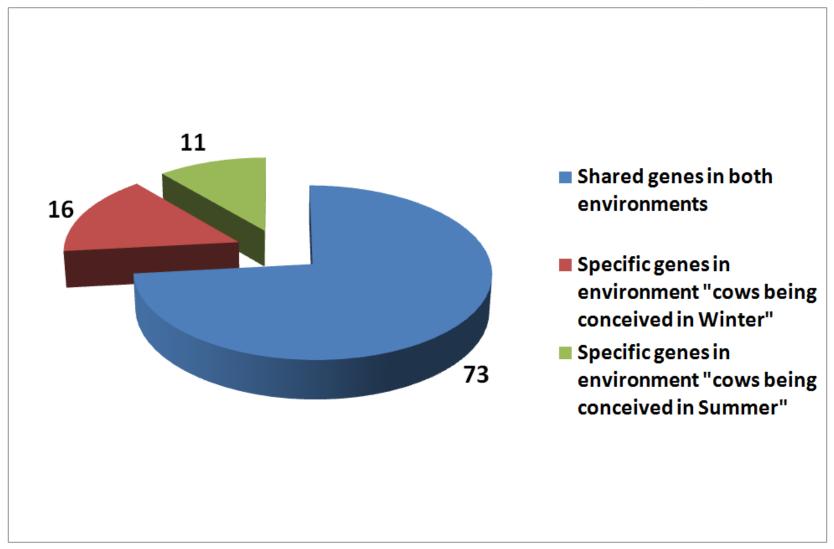
SSGBlup PostGSf90

Gene mapping

ORG.MESH.BTA.DB


Genetic correlations

		Winter L1 L2 L3		L1	Summer .1 L2 L3		
Winter	L1	.07	.77	.71	.73	.61	.62
	L2		.06	.74	.75	.68	.60
	L3			.06	.70	.58	.58
Summer	L1				.07	.68	.62
	L2					.05	.63
	L3						.05



Manhattan plots

Proportions of identified genes

Functional gene enrichment (shared)

MeSH ID	Term	Number of signif. genes	Total genes	P-Value
D011270	Pregnancy, Animal	12	71	0.001
D013312	Stress, Physiological	6	23	0.002
D030762	Estrous Cycle	12	86	0.004
D047109	Fetal Development	3	7	0.006
D044127	Epigenesis, Genetic	6	29	0.006

Functional gene enrichment (specific summer)

MeSH ID	MeSH term Name	Signif. Genes	P-value
D050883	HSC70 Heat-Shock Proteins	4	0.003
D019791	Guanidine	4	0.006
D018384	Oxidative Stress	9	0.009
D007335	Insulin-Like Growth Factor II	4	0.014

Functional gene enrichment (specific winter)

MeSH ID	MeSH term Name	Signif. Genes	P-value
D001120	Arginine	10	0.001
D051766	Early Growth Response Protein 1	3	0.017
D004847	Epithelial Cells	19	0.025
D000222	Adaptation, Physiological	3	0.029

Take home messages

> r_g correlations across both early-life environments were lower than .80

Differentially expressed genes when offspring being conceived in summer compared to winter

Ongoing work in the identification of potential gene candidates for metabolism and physiology traits

Acknowledgements

Support of the Service Public de Wallonie (SPW – DGO3, Belgium)

Wallonie

Walloon Breeding Association

The content of the presentation reflects only the view of the authors; the Community is not liable for any use that may be made of the information contained in this presentation.