

Faculty of Agricultural and Nutritional Science CAU

Christian-Albrechts-University Kiel

Institute of Animal Breeding and Husbandry

Whole-genome sequence quest targeting

parent-of-origin effects in pigs

I. Blaj¹, C. Falker-Gieske², J. Tetens², S. Preuß³, J. Bennewitz³ & G. Thaller¹

¹ Kiel University, Institute of Animal Breeding and Husbandry, Kiel, Germany
 ² Göttingen University, Department of Animal Science, Functional Breeding Group, Göttingen, Germany
 ³ University of Hohenheim, Institute of Animal Science, Stuttgart, Germany

EAAP 2018 69th Annual Meeting of the European Federation of Animal Science Dubrovnik, Croatia, 27th to 31st August 2018

- Imprinting > parent of origin effects
- Genes are expressed in a parent of origin specific manner
- Phenotypic differences between the heterozygous genotypes
- Examples:
 - Callipyge mutation in sheeps polar overdominance (Cockett et al., 1996)
 - Imprinted QTL with paternal expression on SSC2 (Jeon et al., 1999; Nezer et al., 1999),
 causative mutation of the paternally expressed QTL > IGF2 gene (Van Laere et al., 2003)

- Additivity and non-additivity
 - Nishio and Satoh, 2015, Jiang et al., 2017, Varona et al., 2018

Target parent-of-origin effects for growth and fatness related traits in pig F2

crosses stemming from different founder breeds

Three-generation experimental populations

Three-generation experimental populations

- Genotyping with PorcineSNP60 BeadChip (Illumina) for F0, F1 and F2
- Sequence data: F0 ~ 22x coverage and F1 ~ 1x coverage
- Imputation step Beagle 4.0
- Reference genome: SusScrofa11.1

Common all designs	Additionally for D1
Average daily gain (ADG)	Fat thickness neck (SCF)
Backfat thickness (BFT)	Fat thickness middle of the back (BFM)
Meat to fat ratio (MFR)	Fat thickness end of the back (BFTR)
Carcass length (CRCL)	Fat thickness at latissimus dorsi muscle (SCFLD)
	Fat thickness over the loin muscle (SCFLM)
	Belly fatness score (BFS)

 Table 1. Phenotypic traits

Variance component

-	$y = \mu + g_A + e$ $y = \mu + g_A + g_D + e$ $y = \mu + g_A + g_D + g_{imp} + e$	(Eq. 1) (Eq. 2) (Eq. 3)
Additive GWAS {-1,0,0,1}	$y = \mu + x_{add} b_{add} + g_A + g_D + g_{imp} + e$	(Eq. 4)
Imprinting GWAS {0,-1,1,0}	$y = \mu + x_{imp} b_{imp} + g_A + g_D + g_{imp} + e$	(Eq. 5)

Maternal and paternal GWAS

{0,1}	$y = \mu + x_{mat} b_{mat} + g_A + g_D + g_{imp} + e$	(Eq. 6)
	$y = \mu + x_{pat} b_{pat} + g_A + g_D + g_{imp} + e$	(Eq. 7)

Variance component		
•	<i>y=µ</i> + <i>g</i> _{<i>A</i>} + <i>e</i>	(Eq. 1)
	$y = \mu + g_A + g_D + e$	(Eq. 2)
	$y = \mu + g_A + g_D + g_{imp} + e$	(Eq. 3)
Additive GWAS		
{-1,0,0,1}	$y = \mu + x_{add} b_{add} + g_A + g_D + g_{imp} + e$	(Eq. 4)
Imprinting GWAS		
{0,-1,1,0}	$y = \mu + x_{imp} b_{imp} + g_A + g_D + g_{imp} + e$	(Eq. 5)
Meternel and neternel CMA	6	
Maternal and paternal GWA	5	
{0,1}	$y = \mu + x_{mat} b_{mat} + g_A + g_D + g_{imp} + e$	(Eq. 6)
	$y = \mu + x_{pat} b_{pat} + g_A + g_D + g_{imp} + e$	(Eq. 7)

Using genotype data

Variance component

	$y = \mu + g_A + e$	(Eq. 1)
	$y = \mu + g_A + g_D + e$	(Eq. 2)
	$y = \mu + g_A + g_D + g_{imp} + e$	(Eq. 3)
Additive GWAS		
{-1,0,0,1}	$y = \mu + x_{add} b_{add} + g_A + g_D + g_{imp} + e$	(Eq. 4)
Imprinting GWAS		
{0,-1,1,0}	$y = \mu + x_{imp}b_{imp} + g_A + g_D + g_{imp} + e$	(Eq. 5)
Maternal and pater	nal GWAS	
{0,1}	$y = \mu + x_{mat} b_{mat} + g_A + g_D + g_{imp} + e$	(Eq. 6)
	$y = \mu + x_{pat} b_{pat} + g_A + g_D + g_{imp} + e$	(Eq. 7)

Using sequence data

Fig 1. Variance component estimation (genotype data)

ALLE

Fig 1. Variance component estimation (genotype data)

Cross	Trait	Add	itive	Impri	nting	Mate	ernal	Paternal	
	ADG	х	2, 7	-	-	-	-	х	2
D1	BFT, SCF, BFTR, SCFLD, SCFLM, BFS	х	2	х	2	-	-	х	2
	MFR	х	1, 2	х	2	-	-	х	2
	CRCL	х	7, 17	х	17	х	17	х	17
	BFM	-	-	х	2	-	-	х	2
50	BFT		7	-	-	-	-	х	2
DZ	MFR	-	-	х	2	-	-	х	2
	CRCL	х	7	-	-	х	7	-	-
D3	BFT, MFR	-	-	х	2	-	-	х	2
	CRCL	х	1	-	-	-	-	-	-
D4	ADG, BFT, CRCL	х	7	-	-	х	7	-	-

Cross	Trait	Add	Additive Imprinting		Maternal		Paternal		
	ADG	х	2, 7	-	-	-	-	х	2
D1	BFT, SCF, BFTR, SCFLD, SCFLM, BFS	х	2	х	2	-	-	х	2
	MFR	х	1, 2	х	2	-	-	х	2
	CRCL	х	7, 17	х	17	х	17	х	17
	BFM	-	-	х	2	-	-	x	2
50	BFT		7	-	-	-	-	x	2
DZ	MFR	-	-	х	2	-	-	х	2
	CRCL	х	7	-	-	х	7	-	-
D3	BFT, MFR	-	-	х	2	-	-	х	2
	CRCL	х	1	-	-	-	-	-	-
D4	ADG, BFT, CRCL	х	7	-	-	х	7	-	-

Cross	Trait	Add	itive	Impri	nting	Mate	ernal	Paternal	
	ADG	х	2, 7	-	-	-	-	х	2
D1	BFT, SCF, BFTR, SCFLD, SCFLM, BFS	х	2	х	2	-	-	х	2
	MFR	х	1, 2	х	2	-	-	х	2
	CRCL	х	7, 17	х	17	х	17	х	17
	BFM	-	-	х	2	-	-	х	2
50	BFT		7	-	-	-	-	х	2
DZ	MFR	-	-	х	2	-	-	х	2
	CRCL	х	7	-	-	х	7	-	-
D3	BFT, MFR	-	-	х	2	-	-	х	2
	CRCL	х	1	-	-	-	-	-	-
D4	ADG, BFT, CRCL	х	7	-	-	х	7	-	-

Cross	Trait	Additive Imp			Imprinting Maternal		Paternal		
	ADG	х	2, 7	-	-	-	-	х	2
D1	BFT, SCF, BFTR, SCFLD, SCFLM, BFS	х	2	х	2	-	-	х	2
	MFR	х	1, 2	х	2	-	-	х	2
	CRCL	x	7, 17	х	17	х	17	х	17
	BFM	-	-	х	2	-	-	х	2
20	BFT		7	-	-	-	-	х	2
DZ	MFR	-	-	х	2	-	-	х	2
	CRCL	х	7	-	-	х	7	-	-
D3	BFT, MFR	-	-	х	2	-	-	х	2
	CRCL	х	1	-	-	-	-	-	-
D4	ADG, BFT, CRCL	х	7	-	-	х	7	-	-

Cross	Trait	Impri	nting	Mate	ernal	Paternal	
	ADG	-	-	-	-	х	2
D1	BFT, SCF, <u>BFTR, SCFLD, SCFLM, BFS</u>	X	2	-	-	X	2
	MFR	х	2	-	-	x	2
	CRCL	X	17	x	17	x	17
	BFM	х	2	-	-	х	2
D 2	BFT	-	-	-	-	х	2
DZ	MFR	х	2	-	-	х	2
	CRCL	-	-	х	7	-	-
D3	BFT, MFR		2	-	-	х	2
	CRCL	-	-	-	-	-	-
D4	ADG, BFT, CRCL	-	-	x	7	-	-

SSC17: 14.7-26 Mb

Fig 2. Manhattan plot for CRCL in D1 (sequence data). A. Additive. B. Imprinting. C. Maternal. D. Paternal

SSC2: 0 - 13 Mb

Fig 3. Manhattan plot for SCFLM in D1 (sequence data). A. Additive. B. Imprinting. C. Paternal

SSC7: 31.7 – 35 Mb

Fig 4. Manhattan plot for CRCL in D2 (sequence data). A. Additive. B. Maternal

Conclusions

- D1: P x LwxL/L parent-of-origin
- D2: MxP and D3: WxP dominance
- ➤ IGF2
- varying expression patterns
- grandparent-of-origin effect > D1 suitable

Outlook:

- extend genome-wide
- validate findings

Thank you for your attention!

Cross	Trait	Var A	Var AD	Var ADI	Cross	Trait	Var A	Var AD	Var ADI
	ADG	0.35 (0.04)	0.39 (0.04)	0.41 (0.04)		ADG	0.32 (0.09)	0.63 (0.11)	0.63 (0.11)
	BFT	0.46 (0.04)	0.46 (0.04)	0.46 (0.04)	52	BFT	0.71 (0.07)	0.79 (0.08)	0.79 (0.08)
	MFR	0.51 (0.03)	0.52 (0.03)	0.59 (0.03)	DZ	MFR	0.46 (0.09)	0.50 (0.11)	0.52 (0.11)
D1	CRCL	0.60 (0.03)	0.60 (0.03)	0.60 (0.03)		CRCL	0.73 (0.07)	0.73 (0.08)	0.73 (0.08)
	SCF	0.32 (0.04)	0.34 (0.04)	0.34 (0.04)		ADG	0.54 (0.09)	0.60 (0.12)	0.60 (0.12)
	BFM	0.31 (0.04)	0.32 (0.04)	0.32 (0.04)	Da	BFT	0.40 (0.10)	0.41 (0.14)	0.44 (0.14)
	BFTR	0.42 (0.04)	0.42 (0.04)	0.42 (0.04)	D3	MFR	0.46 (0.09)	0.53 (0.13)	0.53 (0.13)
	SCFLD	0.49 (0.03)	0.50 (0.04)	0.51 (0.04)		CRCL	0.30 (0.09)	0.40 (0.14)	0.41 (0.15)
	SCFLM	0.46 (0.04)	0.47 (0.04)	0.56 (0.03)		ADG	0.40 (0.08)	0.46 (0.10)	0.50 (0.10)
	BFS	0.40 (0.04)	0.41 (0.04)	0.42 (0.04)	D/	BFT	0.49 (0.08)	0.49 (0.09)	0.51 (0.10)
					D4	MFR	0.59 (0.08)	0.59 (0.09)	0.59 (0.09)
						CRCL	0.56 (0.08)	0.56 (0.09)	0.59 (0.09)

Selective references

- Nishio, M., & Satoh, M. (2015). Genomic best linear unbiased prediction method including imprinting effects for genomic evaluation. Genetics Selection Evolution, 47(1), 32.
- Jiang, J., Shen, B., O'Connell, J. R., VanRaden, P. M., Cole, J. B., & Ma, L. (2017). Dissection of additive, dominance, and imprinting effects for production and reproduction traits in Holstein cattle. *BMC genomics*, *18*(1), 425.
- Varona, L., Legarra, A., Toro, M. A., & Vitezica, Z. G. (2018). Non-additive Effects in Genomic Selection. Frontiers in genetics, 9, 78.
- Van Laere, A. S., Nguyen, M., Braunschweig, M., Nezer, C., Collette, C., Moreau, L., ... & Andersson, G. (2003). A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 425(6960), 832.
- Cockett, N. E., Jackson, S. P., Shay, T. L., Nielsen, D., Moore, S. S., Steele, M. R., ... & Georges, M. (1994). Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. *Proceedings of the National Academy of Sciences*, *91*(8), 3019-3023.
- Borchers N, Reinsch N and Kalm E 2000. Familial cases of coat colour-change in a Pietrain cross. Journal of Animal Breeding and Genetics 117, 285–287
- Boysen, T. J., J. Tetens, and G. Thaller. "Evidence for additional functional genetic variation within the porcine IGF2 gene affecting body composition traits in an experimental Pietrain×Large White/Landrace cross." animal 5.5 (2011): 672-677.

Covarrubias-Pazaran G. 2016. Genome assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11(6):1-15.

- de Koning, Dirk-Jan, et al. "Genome-wide scan for body composition in pigs reveals important role of imprinting." *Proceedings of the National Academy of Sciences* 97.14 (2000): 7947-7950.
- Geldermann, H., et al. "Mapping of quantitative-trait loci by means of marker genes in F2 generations of Wild boar, Pietrain and Meishan pigs." Journal of Animal Breeding and Genetics 113.1-6 (1996): 381-387.

Knott, Sara A., et al. "Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs." Genetics 149.2 (1998): 1069-1080.

Nezer, Carine, et al. "An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs." Nature genetics 21.2 (1999): 155-156.

O'Connell, Jared, et al. "A general approach for haplotype phasing across the full spectrum of relatedness." PLoS genetics 10.4 (2014): e1004234.