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Introduction

» Single-step GBLUP mixed model equations
» Expressed as alternative extended KKT matrix equation

» Separates very sparse “animal model” and full genomic
information parts

» Sparse and full parts solved with different numerical
approaches

Single-step GBLUP Mixed Model Equations

» Henderson's mixed model equations (MME) of fixed b and

random effects u:

b] [XR'X XR'Z X'R 'y

u| |(ZR'XZR'Z+H'| |ZR'y

» Involves inverses of relationship and residual variance
matrices H-' and R

» Some individuals have genomic relationship information
G, =Z,Z,, all are related by pedigree relationship A:
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» Adjusted genomic relationship matrix:
G, = wAx + (1 —w)Gy
Here, A ' is sparse whereas G is usually a full matrix
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Karush-Kuhn-Tucker (KKT) Matrix Equation

» Alternative Karush-Kuhn-Tucker (KKT) matrix equation:
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» Symmetric anti-triangular, i.e. naturally indefinite with
both positive and negative eigenvalues

» Not ideal for iterative solution methods and not widely used

Extended Single-step KKT MME

» Relationship matrix H expressed as:

H—(L)'GL'. where L — IE;

» Genomic information separated to:
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where | is identity matrix, and Pﬁ orthogonal projection

» Extended Single-step KKT MME with Mendelian
sampling ¢ and original random effects u:
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» Sparse X, Z, and L matrices are separated from the full
genomic information parts in G
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Block Anti-Triangular Factorization

» KKT matrix equations solved using block anti-triangular

(BAT) factorization
» Sparsity preserving QR decomposition of sparse parts:
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where Q is orthogonal and R4 sparse upper triangular
» Extended KKT matrix written as:
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» Reparametrized anti-triangular matrix equation solved
similarly to forward and backward substitutions,
starting from upper right corner:
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» Next, f> solved using iterative solution method from:
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where no inversion of full genomic parts is needed
» Finally, original effects solved from:
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Results

» Nordic Red dairy cattle data set

» Single trait: deregressed proofs of milk yield
» One fixed effect

» |In numbers:

Non-genotyped 70694 Memory usage:
Genotyped 2885 Sparse QR:

Observations 67648 R 18 MB
Markers 37526 Q 560 MB

» Number of iterations (conjugate gradient, tol 10~°):
polygenic proportion w

heritability ## 0.01 0.10 0.20 0.30
0.5 24 22 20 17
0.2 24 22 19 18
0.1 28 27 26 25

Conclusions

» Single-step GBLUP was expressed as extended KKT
matrix equation

» Sparse “animal model” and full genomic parts separated

» Solving: block anti-triangular factorization, sparse QR
decomposition, and iterative method for full part

» Low iteration numbers

» Applicability with large data sets depends on performance
of sparse QR decomposition
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