Solving Single-step GBLUP MME by **Extended KKT Equations and Block Anti-Triangular Factorization**

NATURAL RESOURCES **INSTITUTE FINLAND**

M. Taskinen, E.A. Mäntysaari, I. Strandén

Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland

Introduction

- Single-step GBLUP mixed model equations
- Expressed as alternative extended KKT matrix equation
- Separates very sparse "animal model" and full genomic

Block Anti-Triangular Factorization

- KKT matrix equations solved using block anti-triangular (BAT) factorization
- **Sparsity preserving QR** decomposition of sparse parts:

- information parts
- Sparse and full parts solved with different numerical approaches

Single-step GBLUP Mixed Model Equations

Henderson's mixed model equations (MME) of fixed b and random effects $\widehat{\mathbf{u}}$:

 $\begin{bmatrix} \widehat{\mathbf{b}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{X}'\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{Z}'\mathbf{R}^{-1}\mathbf{Z} + \mathbf{H}^{-1} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{y} \end{bmatrix}$

- Involves inverses of relationship and residual variance matrices \mathbf{H}^{-1} and \mathbf{R}^{-1}
- Some individuals have genomic relationship information $\mathbf{G}_g = \mathbf{Z}_m \mathbf{Z}'_m$, all are related by **pedigree** relationship **A**:

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_{w}^{-1} - (\mathbf{A}_{22})^{-1} \end{bmatrix}$$

Adjusted genomic relationship matrix:

$$\mathbf{G}_{w} = w\mathbf{A}_{22} + (1 - w)\mathbf{G}_{g}$$

 $\mathbf{K} = \begin{bmatrix} \mathbf{0} \ \mathbf{L}' \\ \mathbf{X} \ \mathbf{Z} \end{bmatrix} = \mathbf{Q} \mathbf{R}_0 = \begin{bmatrix} \mathbf{Q}_2 \ \mathbf{Q}_1 \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{R}_1 \end{bmatrix}$

where **Q** is orthogonal and \mathbf{R}_1 sparse upper triangular

Extended KKT matrix written as:

 $\begin{bmatrix} I & 0 \\ 0 & Q' \end{bmatrix} \begin{bmatrix} 0 & K' \\ K & T \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & Q \end{bmatrix} = \begin{bmatrix} 0 & 0 & R'_1 \\ 0 & Q'_2 T Q_2 Q'_2 T Q_1 \\ R_1 & Q'_1 T Q_2 Q'_1 T Q_1 \end{bmatrix}, \text{ where } \mathbf{T} = \begin{bmatrix} \widetilde{\mathbf{G}} & \mathbf{0} \\ \mathbf{0} & \mathbf{R} \end{bmatrix}$

Reparametrized anti-triangular matrix equation solved similarly to forward and backward substitutions, starting from upper right corner:

$$\mathbf{R}_{1}'\mathbf{f}_{1} = \mathbf{0} \Leftrightarrow \mathbf{f}_{1} = \mathbf{0}, \text{ where } \mathbf{f} = \begin{bmatrix} \mathbf{f}_{2} \\ \mathbf{f}_{1} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{2}' \\ \mathbf{Q}_{1} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\varphi}} \\ \widehat{\mathbf{e}} \end{bmatrix} = \mathbf{Q}' \begin{bmatrix} \widehat{\boldsymbol{\varphi}} \\ \widehat{\mathbf{e}} \end{bmatrix}$$

Next, f₂ solved using iterative solution method from:

$$(\mathbf{Q}_{2}^{\prime}\mathbf{T}\mathbf{Q}_{2})\mathbf{f}_{2}=\mathbf{Q}_{2}^{\prime}\begin{bmatrix}\mathbf{0}\\\mathbf{y}\end{bmatrix}$$

where no inversion of full genomic parts is needed

Finally, original effects solved from:

$$\begin{bmatrix} \hat{b} \end{bmatrix} = O' \begin{bmatrix} -\tilde{G}\hat{\phi} \end{bmatrix}$$
 where $\begin{bmatrix} \hat{\phi} \end{bmatrix} = Of = Of$

Here, A^{-1} is sparse whereas G_q is usually a full matrix

Karush-Kuhn-Tucker (KKT) Matrix Equation

Alternative Karush-Kuhn-Tucker (KKT) matrix equation:

 $\begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} \mathbf{H}\mathbf{Z}' \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{e}} \end{bmatrix}, \text{ where } \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{e}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \mathbf{X}' \\ \mathbf{X} \mathbf{V} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{0} \\ \mathbf{y} \end{bmatrix}$

and V = ZHZ' + R needs to be invertible

- Symmetric **anti-triangular**, i.e. naturally **indefinite** with both positive and negative eigenvalues
- Not ideal for iterative solution methods and not widely used

Extended Single-step KKT MME

Relationship matrix H expressed as:

$$\mathbf{H} = (\mathbf{L}')^{-1}\widetilde{\mathbf{G}}\mathbf{L}^{-1}$$
, where $\mathbf{L} = \begin{bmatrix} \mathbf{L}_1 \\ \mathbf{L}_2 \end{bmatrix}$ and $\mathbf{A}^{-1} = \mathbf{L}\mathbf{L}$

Genomic information separated to:

$$\widetilde{\mathbf{O}}$$
 \mathbf{I} $(\mathbf{I}$ \mathbf{I} \mathbf{I}

Results

- Nordic Red dairy cattle data set
- Single trait: deregressed proofs of milk yield
- One fixed effect

In numbers:

Non-genotyped	70694	Memory usage:		
Genotyped	2885	Sparse QR:		
Observations	67648	R ₁	18 MB	
Markers	37526	Q	560 MB	

Number of iterations (conjugate gradient, tol 10^{-6}):

	polygenic proportion w						
heritability h ²	0.01	0.10	0.20	0.30			
0.5	24	22	20	17			
0.2	24	22	19	18			
0 1	28	27	26	25			

 $\mathbf{G} = \mathbf{I} + (\mathbf{1} - \mathbf{W})\mathbf{P}_{\mathbf{L}_{1}^{\prime}}^{\perp}(\mathbf{L}_{2}^{\prime}\mathbf{Z}_{m}\mathbf{Z}_{m}^{\prime}\mathbf{L}_{2}^{\prime} - \mathbf{I})\mathbf{P}_{\mathbf{L}_{1}^{\prime}}^{\perp}$

where I is identity matrix, and $P_{L'_1}^{\perp}$ orthogonal projection

Extended Single-step KKT MME with Mendelian **sampling** $\widehat{\Phi}$ and original random effects $\widehat{\mathbf{u}}$:

Sparse X, Z, and L matrices are separated from the full genomic information parts in **G**

Conclusions

- Single-step GBLUP was expressed as extended KKT matrix equation
- Sparse "animal model" and full genomic parts separated
- Solving: block anti-triangular factorization, sparse QR decomposition, and iterative method for full part
- Low iteration numbers
- Applicability with large data sets depends on performance of sparse QR decomposition

matti.taskinen@luke.fi

