Solving Single-step GBLUP MME by Extended KKT Equations and Block Anti-Triangular Factorization

M. Taskinen, E.A. Mäntysaari, I. Strandén

Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland

Introduction

- Single-step GBLUP mixed model equations
- Expressed as alternative extended KKT matrix equation
- Separates very sparse "animal model" and full genomic information parts
- Sparse and full parts solved with different numerical approaches

Single-step GBLUP Mixed Model Equations

- Henderson's mixed model equations (MME) of fixed $\widehat{\mathbf{b}}$ and random effects $\widehat{\mathbf{u}}$:

$$
\left[\begin{array}{l}
\widehat{\mathbf{b}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{H}^{-1}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{y}
\end{array}\right]
$$

- Involves inverses of relationship and residual variance matrices \mathbf{H}^{-1} and \mathbf{R}^{-1}
- Some individuals have genomic relationship information $\mathbf{G}_{g}=\mathbf{Z}_{m} \mathbf{Z}_{m}^{\prime}$, all are related by pedigree relationship \mathbf{A} :

$$
\mathbf{H}^{-1}=\mathbf{A}^{-1}+\left[\begin{array}{lc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{G}_{w}^{-1}-\left(\mathbf{A}_{22}\right)^{-1}
\end{array}\right]
$$

- Adjusted genomic relationship matrix:

$$
\mathbf{G}_{w}=w \mathbf{A}_{22}+(1-w) \mathbf{G}_{g}
$$

Here, \mathbf{A}^{-1} is sparse whereas \mathbf{G}_{g} is usually a full matrix

Karush-Kuhn-Tucker (KKT) Matrix Equation

- Alternative Karush-Kuhn-Tucker (KKT) matrix equation:

$$
\left[\begin{array}{l}
\widehat{\mathbf{b}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{H Z} \mathbf{Z}^{\prime}
\end{array}\right]\left[\begin{array}{l}
\widehat{\mathbf{b}} \\
\hat{\mathbf{e}}
\end{array}\right] \text {, where }\left[\begin{array}{l}
\widehat{\mathbf{b}} \\
\widehat{\mathbf{e}}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{0} & \mathbf{X}^{\prime} \\
\mathbf{X} & \mathbf{V}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{y}
\end{array}\right]
$$

and $\mathbf{V}=\mathbf{Z H Z}+\mathbf{R}$ needs to be invertible

- Symmetric anti-triangular, i.e. naturally indefinite with both positive and negative eigenvalues
- Not ideal for iterative solution methods and not widely used

Extended Single-step KKT MME

- Relationship matrix \mathbf{H} expressed as:

$$
\mathbf{H}=\left(\mathrm{L}^{\prime}\right)^{-1} \widetilde{\mathbf{G}} \mathrm{~L}^{-1} \text {, where } \mathrm{L}=\left[\begin{array}{l}
\mathrm{L}_{1} \\
\mathrm{~L}_{2}
\end{array}\right] \text { and } \mathbf{A}^{-1}=\mathrm{LL}^{\prime}
$$

- Genomic information separated to:

$$
\widetilde{\mathbf{G}}=\mathbf{I}+(1-w) \mathbf{P}_{\mathrm{L}_{1}^{\prime}}^{\perp}\left(\mathrm{L}_{2}^{\prime} \mathbf{Z}_{m} \mathbf{Z}_{m}^{\prime} \mathrm{L}_{2}-\mathbf{I}\right) \mathbf{P}_{\mathrm{L}_{1}^{\prime}}^{\perp}
$$

where I is identity matrix, and $P_{L_{1}^{\prime}}^{\perp}$ orthogonal projection

- Extended Single-step KKT MME with Mendelian sampling $\widehat{\phi}$ and original random effects $\widehat{\mathbf{u}}$:

$$
\left[\begin{array}{c}
\widehat{b} \\
\widehat{u} \\
\widehat{\phi} \\
\widehat{\mathbf{e}}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & X^{\prime} \\
0 & 0 & L & Z^{\prime} \\
0 & L^{\prime} & \mathbf{G} & 0 \\
X & Z & 0 & R
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
0 \\
0 \\
\mathbf{y}
\end{array}\right]
$$

- Sparse \mathbf{X}, \mathbf{Z}, and L matrices are separated from the full genomic information parts in $\widetilde{\mathbf{G}}$

Block Anti-Triangular Factorization

- KKT matrix equations solved using block anti-triangular (BAT) factorization
- Sparsity preserving QR decomposition of sparse parts:

$$
\mathbf{K}=\left[\begin{array}{ll}
\mathbf{0} & \mathbf{L}^{\prime} \\
\mathbf{X} & \mathbf{Z}
\end{array}\right]=\mathbf{Q} \mathbf{R}_{0}=\left[\begin{array}{ll}
\mathbf{Q}_{2} & \mathbf{Q}_{1}
\end{array}\right]\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{R}_{1}
\end{array}\right]
$$

where \mathbf{Q} is orthogonal and R_{1} sparse upper triangular

- Extended KKT matrix written as:
$\left[\begin{array}{ll}\mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}^{\prime}\end{array}\right]\left[\begin{array}{ll}\mathbf{0} & \mathbf{K}^{\prime} \\ \mathbf{K} & \mathbf{T}\end{array}\right]\left[\begin{array}{ll}\mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}\end{array}\right]=\left[\begin{array}{ccc}\mathbf{0} & \mathbf{0} & \mathbf{R}_{1}^{\prime} \\ \mathbf{0} & \mathbf{Q}_{2}^{\prime} \mathbf{T} \mathbf{Q}_{2} & \mathbf{Q}_{2}^{\prime} \mathbf{\mathbf { Q } _ { 1 }} \\ \mathbf{R}_{1} & \mathbf{Q}_{1}^{\prime} \mathbf{T} \mathbf{Q}_{2} & \mathbf{Q}_{1}^{\prime} \mathbf{T} \mathbf{Q}_{1}\end{array}\right]$, where $\mathbf{T}=\left[\begin{array}{cc}\widetilde{\mathbf{G}} & \mathbf{0} \\ \mathbf{0} & \mathbf{R}\end{array}\right]$
- Reparametrized anti-triangular matrix equation solved similarly to forward and backward substitutions, starting from upper right corner:
$R_{1}^{\prime} \mathbf{f}_{1}=\mathbf{0} \Leftrightarrow \mathbf{f}_{1}=\mathbf{0}$, where $\mathbf{f}=\left[\begin{array}{l}\mathbf{f}_{2} \\ \mathbf{f}_{1}\end{array}\right]=\left[\begin{array}{l}\mathbf{Q}_{2}^{\prime} \\ \mathbf{Q}_{1}\end{array}\right]\left[\begin{array}{l}\hat{\boldsymbol{\phi}} \\ \hat{\mathbf{e}}\end{array}\right]=\mathbf{Q}^{\prime}\left[\begin{array}{l}\hat{\boldsymbol{\phi}} \\ \hat{\mathbf{e}}\end{array}\right]$
- Next, \mathbf{f}_{2} solved using iterative solution method from:

$$
\left(\mathbf{Q}_{2}^{\prime} \mathbf{T} \mathbf{Q}_{2}\right) \mathbf{f}_{2}=\mathbf{Q}_{2}^{\prime}\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{y}
\end{array}\right]
$$

where no inversion of full genomic parts is needed

- Finally, original effects solved from:

$$
\mathbf{R}_{1}\left[\begin{array}{l}
\widehat{\mathbf{b}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\mathbf{Q}_{1}^{\prime}\left[\begin{array}{c}
-\widetilde{\mathbf{G}} \hat{\boldsymbol{\phi}} \\
\mathbf{y}-\mathbf{R}
\end{array}\right] \text {, where }\left[\begin{array}{c}
\widehat{\boldsymbol{\phi}} \\
\widehat{\mathbf{e}}
\end{array}\right]=\mathbf{Q} \mathbf{f}=\mathbf{Q}_{\mathbf{2}} \mathbf{f}_{2}
$$

Results

- Nordic Red dairy cattle data set
- Single trait: deregressed proofs of milk yield
- One fixed effect
- In numbers:

Non-genotyped	70694	Memory usage:
Genotyped	2885	Sparse QR:
Observations	67648	$\mathrm{R}_{1} \quad 18 \mathrm{MB}$
Markers	37526	Q 560 MB

- Number of iterations (conjugate gradient, tol 10^{-6}):

	polygenic proportion w			
heritability h^{2}	0.01	0.10	0.20	0.30
0.5	24	22	20	17
0.2	24	22	19	18
0.1	28	27	26	25

Conclusions

- Single-step GBLUP was expressed as extended KKT matrix equation
- Sparse "animal model" and full genomic parts separated
- Solving: block anti-triangular factorization, sparse QR decomposition, and iterative method for full part
- Low iteration numbers
- Applicability with large data sets depends on performance of sparse QR decomposition

