

Bavarian State Research Center for Agriculture

Methods for prediction of breeding values for young animals in single-step evaluations

Eduardo Pimentel, C. Edel, R. Emmerling, K.-U. Götz

Institute of Animal Breeding

EAAP 2018 - Dubrovnik, Croatia, 27-31 August 2018

Single-step model is computationally very demanding

□ Single-step model is computationally very demanding

□ ssGEBV of young animals should be rapidly available

□ Single-step model is computationally very demanding

ssGEBV of young animals should be rapidly available

With increasing number of genotypes setting up the full model every time may become impracticable

□ Single-step model is computationally very demanding

ssGEBV of young animals should be rapidly available

- With increasing number of genotypes setting up the full model every time may become impracticable
- Need for efficient and cost-effective alternative with negligible loss in accuracy

Objective

□ Single-step model is computationally very demanding

□ ssGEBV of young animals should be rapidly available

- With increasing number of genotypes setting up the full model every time may become impracticable
- Need for efficient and cost-effective alternative with negligible loss in accuracy

□ The objective here was to develop such an alternative

Fleckvieh data from April 2017 (here the "previous run")

- → Single-step univariate runs for 23 conformation traits
- → MiX99 with input of $[G^{-1} A_{22}^{-1}]$
- → 3,172,636 animals and around 1.4 million records
- → 62,559 genotyped animals in $\mathbf{G} = 0.8\mathbf{G}_0 + 0.2\mathbf{A}_{22}$
- □ 1,768 further young animals for prediction and validation

Validation through correlation with ssGEBV of <u>full model</u>:

→ 62,559 + 1,768 = 64,327 genotyped animals in **G**

 $\mathbf{G} = 0.8\mathbf{G}_0 + 0.2\mathbf{A}_{22}$

Alternative models:

→ Data from previous run (62,559 genotyped animals)

➔ Prediction of ssGEBV for the 1,768 young animals

SNP model:

SNP model:

$$\begin{bmatrix} \mathbf{1}'\mathbf{1} & \mathbf{1}'\mathbf{M} \\ \mathbf{M}'\mathbf{1} & \mathbf{M}'\mathbf{M} + \mathbf{I}k \end{bmatrix} \begin{bmatrix} \hat{\mu} \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{1}'\hat{\mathbf{a}}_2 \\ \mathbf{M}'\hat{\mathbf{a}}_2 \end{bmatrix} \qquad \qquad k = \frac{\sigma_e^2}{\sigma_g^2}$$

$$k = \frac{\sigma_e^2}{\sigma_g^2} = \frac{0.2\sigma_a^2}{0.8\sigma_a^2\gamma} \qquad \qquad \gamma = \frac{1}{\sum 2p_i (1-p_i)}$$

$$k = 0.25 \sum 2p_i(1-p_i)$$

SNP model:

$$\begin{bmatrix} \mathbf{1}'\mathbf{1} & \mathbf{1}'\mathbf{M} \\ \mathbf{M}'\mathbf{1} & \mathbf{M}'\mathbf{M} + \mathbf{I}k \end{bmatrix} \begin{bmatrix} \hat{\mu} \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{1}'\hat{\mathbf{a}}_2 \\ \mathbf{M}'\hat{\mathbf{a}}_2 \end{bmatrix} \qquad \qquad k = \frac{\sigma_e^2}{\sigma_g^2}$$

$$\hat{\mathbf{e}} = \hat{\mathbf{a}}_2 - (\hat{\mu} + \mathbf{M}\hat{\mathbf{g}})$$

$$\hat{\mathbf{e}}_{y} = \mathbf{A}_{y2}\mathbf{A}_{22}^{-1}\hat{\mathbf{e}}$$

 $\hat{\mathbf{a}}_y = (\hat{\mu} + \mathbf{M}_y \hat{\mathbf{g}}) + \hat{\mathbf{e}}_y$

	Min	1Q.	Mean	3Q.	Мах
G model	0.9851	0.9916	0.9927	0.9941	0.9949
SNP model	0.9744	0.9888	0.9896	0.9920	0.9929

Illustration with rump angle

130 120 N = 1768 r = 0.9842110 Full model 100 60 80 80 90 100 110 120 130 SNP model

All young animals

- Closer look at different groups of young animals
- Parents in the previous run? If yes, with phenotype / genotype?

130 120 N = 1768r = 0.9842110 Full model 100 90 80 80 90 100 110 120 130 SNP model

All young animals

- Closer look at different groups of young animals
- Parents in the previous run? If yes, with phenotype / genotype?

- Sires of young animals are usually represented in \hat{a}_2
- Information from the male side is usually well transmitted through SNP effects

Transmission of dam information through MGS only

Mendelian sampling information of dam not contained in \hat{a}_2

Add to ssGEBV of young animal:

 $0.5\widehat{\mathbf{m}}(1-\hat{r}_{imp}^2)$

- Missing dam replaced by genetic group in the full model
- Genetic group information not contained in \hat{a}_2

Add half of the group solution from previous run to ssGEBV of young animal

	Min	1Q.	Mean	3Q.	Мах
G model	0.9851	0.9916	0.9927	0.9941	0.9949
SNP model	0.9744	0.9888	0.9896	0.9920	0.9929
SNP model PLUS	0.9897	0.9927	0.9932	0.9941	0.9949

Animal Breeding

Conclusions

- Prediction of single-step breeding values for young animals can be well approximated using SNP effects estimated from systems of size equal to the number of markers (i.e., without setting up G)
- Especially meaningful for single-step implementations without the explicit computation of the inverse of the genomic relationship matrix (e.g., ssGTBLUP)

Thanks!

Trait	Abr.	G-model	SNP-model	SNP-model PLUS
Rump angle	BN	0.990	0.984	0.993
Rump length	BL	0.994	0.992	0.994
Muscularity	BM	0.985	0.974	0.991
Udder depth	EB	0.995	0.993	0.994
Udder	EU	0.991	0.987	0.992
Fetlock	FE	0.992	0.989	0.993
Feet & Legs	FU	0.995	0.993	0.994
Width	НВ	0.994	0.992	0.994
Height at cross	КН	0.991	0.989	0.993
Front teat placement	SP	0.995	0.993	0.994
Frame	RA	0.991	0.989	0.992
Udder cleanliness	ER	0.992	0.989	0.991
Rump depth	RT	0.994	0.991	0.993
Rear udder length	SEL	0.992	0.989	0.990
Hocks	SPA	0.991	0.987	0.993
Hock angularity	SPW	0.995	0.993	0.995
Teat thickness	SD	0.994	0.992	0.995
Teat length	SL	0.993	0.991	0.994
Teat placement	SS	0.994	0.992	0.994
Foot angle	TR	0.992	0.988	0.994
Fore udder length	VEL	0.994	0.990	0.993
Fore udder attachment	VA	0.994	0.991	0.994
Suspensory ligament	ZB	0.995	0.992	0.994
Mean		0.9927	0.9896	0.9932

