Genomic predictability of single-step GBLUP for production traits in US Holstein

Y. Masuda¹, P. M. VanRaden², H. L. Bradford², A. Legarra³, I. Misztal¹, and T. J. Lawlor⁴

1 University of Georgia, USA; 2 AGIL, USDA, USA; 3 INRA, France; 4 Holstein Association USA, Inc., USA

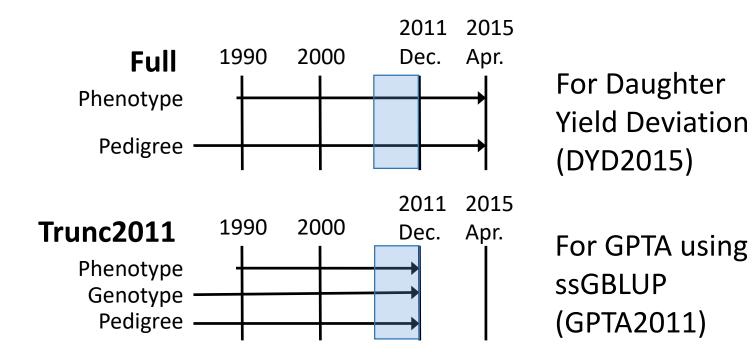
EAAP 2018, August 27-31, Dubrovnik, Croatia

Background

- Genomic prediction with single-step GBLUP (ssGBLUP)
 - Genotyped + non-genotyped animals
 - Accountability for pre-selection
 - APY: dimensionality reduction in marker genotypes
- Required: compatibility among relationship matrices

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1} \end{bmatrix}$$

- Reasonable in complete pedigree
- Missing pedigree: adjustment of ${f A}_{22}^{-1}$ by ω
- How to incorporate unknown parent groups (UPG)?


Objectives

- To validate genomic predictions for young bulls by different configurations of UPG in US Holstein
- To discuss possible modifications on \mathbf{H}^{-1} to handle UPG in ssGBLUP: a simulation study

Full data in Holstein

	Description	Number of records/animals
Phenotype	Milk, fat, and protein yield (305-d basis) for US Holstein cows recorded between Jan. 1990 and Apr. 2015	37,259,427
	Cows with phenotype(s)	15,891,366
Pedigree	Animals born in Apr. 2015 or earlier (3-gen. back from phenotyped cows) 185 UPGs	22,963,255
Genotype	Animals born in Apr. 2015 or earlier (60,671 markers)	764,029

Validation study

Validation Bulls: Genotyped young bulls with no tested daughters in 2011 but with at least 50 tested daughters in 2015 (N=3,797)

 $DYD2015 = b_1 \times GPTA2011 + b_0$

- R²: validation reliability
- Slope (b_1) : Inflation of prediction

Different UPG in \mathbf{H}^{-1}

- 1. Weight (ω) on A_{22}^{-1} : **0.9** or **1.0**
- 2. UPG: pedigree + genomic UPG, pedigree UPG only, or no UPG (genomic UPG) (pedigree UPG)

$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -(\mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1}) \mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2'(\mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1}) & \mathbf{Q}_2'(\mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1}) \mathbf{Q}_2 \end{bmatrix}$$

DYD2015 vs GPTA2011 (Protein)

Data				R2	b1
Official GPTA 2011				0.51	0.81
		ω=0.9		ω=1.0	
Data	UPG	R2	b1	R2	b1
GPTA2011	Genomic UPG	0.39	0.74	0.32	0.51

DYD2015 vs GPTA2011 (Protein)

Data				R2	b1
Official GPTA 2011				0.51	0.81
		ω=0.9		ω=1.0	
Data	UPG	R2	b1	R2	b1
GPTA2011	Genomic UPG	0.39	0.74	0.32	0.51
	Pedigree UPG	0.50	0.96	0.52	0.78
	No UPGs			0.50	0.78

Low accuracy with genomic UPG

- GPTA for young genotypes
 - Pedigree UPG: $GPTA = w_1PA + w_2DGV w_3PI$ $\approx DGV$
 - Genomic UPG: $GPTA = w_1PA + w_2DGV w_3PI + w_4UPG \approx DGV + UPG$

Larger weights with many genotypes

Too large for young animals

- Possible solutions
 - Just using pedigree UPG
 - Discounting UPG effects
 - Removing double counting between

DGV and UPG
• Scaling **A** to **G** ("metafounders")
$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix}
0 & 0 & 0 \\
0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & -(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1})\mathbf{Q}_2 \\
0 & -\mathbf{Q}_2'(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}) & \mathbf{Q}_2'(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1})\mathbf{Q}_2
\end{bmatrix}$$

Missing parents in ssGBLUP

Genomic UPG

•
$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{G}^{-1} \mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2' \mathbf{G}^{-1} & \mathbf{Q}_2' \mathbf{G}^{-1} \mathbf{Q}_2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{A}_{22}^{-1} \mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2' \mathbf{A}_{22}^{-1} & \mathbf{Q}_2' \mathbf{A}_{22}^{-1} \mathbf{Q}_2 \end{bmatrix}$$

Genomic UPG without Q'G⁻¹Q

•
$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$-\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{A}_{22}^{-1}\mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2'\mathbf{A}_{22}^{-1} & \mathbf{Q}_2'\mathbf{A}_{22}^{-1}\mathbf{Q}_2 \end{bmatrix}$$

Pedigree UPG

•
$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

With A_{22}^*

Genomic UPG

•
$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{G}^{-1} \mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2' \mathbf{G}^{-1} & \mathbf{Q}_2' \mathbf{G}^{-1} \mathbf{Q}_2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{A}_{22}^{-1} \mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2' \mathbf{A}_{22}^{-1} & \mathbf{Q}_2' \mathbf{A}_{22}^{-1} \mathbf{Q}_2 \end{bmatrix}$$

• Genomic UPG without Q'G-1Q

•
$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$-\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{A}_{22}^{-1}\mathbf{Q}_{2} \\ 0 & -\mathbf{Q}_{2}'\mathbf{A}_{22}^{-1} & \mathbf{Q}_{2}'\mathbf{A}_{22}^{-1}\mathbf{Q}_{2} \end{bmatrix}$$

Pedigree UPG

•
$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^* & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• $\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^* & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Obtained by absorbing UPG-related submatrices into \mathbf{A}_{22} submatrices into A₂₂

A_{22}^* : Modification with UPG

Indirect inversion

$$A_{22}^{-1} = A^{22} - A^{21}(A^{11})^{-1}A^{12}$$
where $A^{-1} = \begin{bmatrix} A^{11} & A^{12} \\ A^{21} & A^{22} \end{bmatrix}$

With UPG

$$A_{22}^* = A^{22} - \begin{bmatrix} A^{21} & A^{23} \end{bmatrix} \begin{bmatrix} A^{11} & A^{13} \\ A^{31} & A^{33} + I \end{bmatrix} \begin{bmatrix} A^{12} \\ A^{32} \end{bmatrix}$$

where
$$A^* = \begin{bmatrix} A^{11} & A^{12} & A^{13} \\ A^{21} & A^{22} & A^{23} \\ A^{31} & A^{32} & A^{33} \end{bmatrix} = \begin{bmatrix} A^{11} & A^{12} & -[A^{11} & A^{12}]Q \\ A^{21} & A^{22} & -[A^{21} & A^{22}]Q \\ -Q'\begin{bmatrix} A^{11} \\ A^{21} \end{bmatrix} & -Q'\begin{bmatrix} A^{12} \\ A^{22} \end{bmatrix} & Q'A^{-1}Q \end{bmatrix}$$

Simulation study

Structure

- $h^2 = 0.3$
- Sex-limited trait (n = 90,000)
- EBV selection
- 10 generations (n = 164,500)
- Ne: 200 theoretical; 25 realized
- Mean F in last generation: 0.11

Genotypes

- 18,674 total
- 5108 in gen. 10 for validation

Assignment of UPGs

- UPG1 for generation 0-4
- UPG2 for generation 5-7
- UPG3 for generation 8-10

Category	Non genotyped	Genotyped
Top bulls	0	0
Top cows	5% (dam)	0
Bottom bulls	30% (dam)	10% (dam)
Bottom cows	30% (dam)	10% (dam)

Results from simulation

	Standard A_{22}^{-1}		
	R2	b1	
Genomic UPG	0.53	0.86	

^{*} Genotyped young animals without records

Results from simulation

	Standard A_{22}^{-1}		Modified A_{22}^*	
	R2	b 1	R2	b1
Genomic UPG	0.53	0.86		
without Q'G ⁻¹ Q	0.62	1.05		
Pedigree UPG	0.63	1.06	0.63	1.06

	R2	b1
Metafounders	0.63	1.08

^{*} Genotyped young animals without records

Summary

- Missing pedigree may reduce the accuracy of genomic prediction in single-step GBLUP.
 - Specific data structure with many missing parents
- We have several options to discount the possible bias of UPG contributions in H*.
 - Removal of G^{-1} from the additional UPG contribution
 - Use of Modified A_{22}^{-1}
 - Metafounders

Acknowledgement

- USDA NIFA (2015-67015-22936) and Holstein Association USA for financial support.
- Council of Dairy Cattle Breeding for phenotype, genotype, and pedigree data.
- John Cole and Melvin Tooker (USDA-AGIL) for preparing the initial data sets and a computing environment.