

Grazing systems production with forestry on Brazilian beef cattle productivity

R.R.S. Corte¹, S.L. Silva¹, P. Méo Filho1, A.F. Pedroso², S.N. Esteves², A. Berndt², P.H.M. Rodriguez¹, P.P.A. Oliveira² Universidade de Sao Paulo, Duque de Caxias Norte, 225, 13635-900, Brazil, ²Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234 s/no, Fazenda Canchim, 13560-970, Brazil; rosanaruegger@gmail.com

✓ OBJECTIVE: to assess beef cattle productivity of different grazing systems scenario

Materials and Methods

- **8** EXT: Extensive continuous grazing system
- **0** INT: Intensive: Dryland rotational grazing system
- **6** CL: Rotational grazing system with crop rotation in each paddock
-) $(\mathbf{4})$ SP: Rotational grazing with eucalyptus trees (15 x 2 m spacing).
- 1) (2) CLF: The same as CL with eucalyptus trees (15 x 2 m spacing).

ONE year trial (december 2014 to december 2015);

✓ 30 Canchim steers (284.8±6.0 kg of live weight - LW;15 months old);

✓ FIVE grazing systems with two area replications (blocks);

Results

Table 1. Beef cattle productivity in different grazing system (least square means ± standard error of the mean)

ltem*	Systems [†]					SEM P
	EXT	INT	CL	CLF	SP	
Stocking rate (AU ha ⁻¹)	1.2b	2.3a	1.5b	1.9ab	2.4a	0.52 0.001
Live BW (kg ha ⁻¹ year ⁻¹)	245b	516 a	439ab	394ab	447ab	43.15 0.045
Carcass (kg ha ⁻¹ year ⁻¹)	130b	281 a	237ab	203ab	231ab	22.74 0.038
CEP (kg ha ⁻¹ year ⁻¹)	93b	199 a	170ab	142ab	159ab	16.85 0.045
^{ab} Means within a row with unlike letters differ at <i>P</i> ≤0.05; SEM: standard error of the mean. *BW: body weight; CEP: carcæs edible portion.						

✓ FORESTRY inclusion in integrated systems as SP and CLF provided intermediate productivity in kg ha-1 year-1 as conventional system (INT and EXT)

tEXT = extensive ; INT = intensive; CL= integrated crop-livestock system; CLF = integrated crop-livestock-forestry system ; SP=Integrated silvopætoral system

✓ It's possible to reach high levels of productivity as well as environmental, social and economic sustainability with Agroecosystems

Acknowledgements

