

69th Annual Meeting of the European Federation of Animal Science

Dubrovnik, Croatia, 27th to 31st August 2018

Effect of temperature in the context of climate change on nutrient requirements of lactating sows

J.Y. Dourmad¹, J.L. Gourdine², <u>D. Renaudeau¹</u>

¹PEGASE, INRA Agrocampus Ouest, France ²URZ, INRA, Guadeloupe, France

Context

✓ Climate change

- Frequency and intensity of heat stress periods
- Pig production under hot climate (tropical, sub tropical regions)

✓ The lactating sow

- A low thermo-neutral zone (12-22°C)
 - high feed intake per kg BW^{0.75}
 - high heat production (high milk production)

=> very sensitive to heat stress

Objective and approach

Objectives

- Quantify physiological and performance responses of lactating sows and their litter to temperature
- Integrate these responses in an decision support tool for sow nutrition

Approach

- Meta-analyses of the literature
- Modeling of the effect of ambient temperature on sow and litter performance
- Simulation of the effect of different climatic series on sow performance and nutritional requirements

Meta-analysis – Mixed model

Effect of ambient temperature on sow feed intake

Modeling and simulations

Sensitivity analyses of the model to ambient temperature : ME balance and digestible lysine requirement

Sensitivity analyses of the model to ambient temperature : ME balance and digestible lysine requirement

Month

Conclusion

Quantification of adaptation mechanisms

➢ Respiratory frequency
➢ Feed intake
☆ Milk production
☆ heat production

✓ Modeling the effects of ambient temperature

- On sows and piglets performance
- On nutritional requirements

✓ Perspectives

- Integration into InraPorc® decision support tool (growing-finishing phase...)
- In practice :
 - Adaptation of feed composition according to season and localization
 - Precision feeding of lactating sows (mixing of two feeds)

