

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Département fédéral de l'économie, de la formation et de la recherche DEFR

Agroscope

Increasing levels of condensed tannins from Sainfoin may reduce the environmental impact of pigs

E. Seoni, G. Battacone, F. Dohme-Meier, G. Bee

EAAP, Dubrovnik, August 27th 2018

Corso di Dottorato in Scienze Agrarie Curriculum in Scienze e Tecnologie Zootecniche

www.agroscope.ch I good food, healthy environment

- Background
 - Tannins are phenolic plant secondary compounds widely distributed through the plant kingdom and at different levels in several animal feeding sources
 - By complexing with feed nutrients (e.g. protein, carbohydrates cell wall components), tannins affect the digestibility of the diets
 - Originally tannins were considered as anti-nutritional factors in diets for ruminants and monogastrics, as they negatively impact
 - feed intake

♦ growth rate

nutrient digestibility

- feed efficiency
- 69th Annual Meeting of the European Federation of Animal Science Eleonora Seoni

Those effects can vary according to the source, type and chemical structure of tannins, amount fed and animal species involved

In pigs:

 dietary inclusion of CT from faba beans reduced the apparent digestibility of crude protein (CP) suggesting that CT can have a marked impact on the nitrogen (N) turnover (Jansman et al., 1995)

In ruminants:

 dietary CT from sainfoin shifted the N excretion from the urinary route to the feces (Scharenberg et al., 2007; Grosse Brinkhaus et al., 2016)

Beneficial from an environmental point of view as ammonia losses from feces are slower and less excessive than urine

will CT decrease protein degradation in the gut of pigs, as shown in ruminants and decrease the urinary N excretion ?

Objective

Investigate the impact of increasing levels of **CT** from Sainfoin included in a grower-finisher diet on **N** digestibility and **N** turnover of entire male (**EM**) pigs

Material and Methods

Onobrychis viciifolia Scop.

Why Sainfoin?

Protein rich legume (CP > 22%)

partly replacement of soy bean?

Elevated CT content (CT > 50 g/kg)

Material and Methods

 48 Swiss Large White entire male (EM) (12 per treatment)

- ad libitum access to the diets
- Pigs were reared in one pen equipped with 4 automatic feeders, in order to monitor individual daily feed intake

BW at start	24.8	±	5.1 kg
BW at slaughter	109.6	±	12.6 kg

Material and Methods

Grower	period		Finishe	er period			
(25-60 K	g BW)		(60-110 Kg BW)				
	Tr	eatme	nts				
0%	5%*		10%*	15%*			
ТО	T5		T10	T15			
				* Sainfoin mea			

Experimental diets

Grower diet	т0	Т5	T10	T15	Finisher diet	то	Т5	T10	T15	
Barley, %	42.2	29.3	16.4	3.4	Barley, %	10.0	10.0	10.0	10.0	
Corn, %	17.4	23.2	29.0	34.8	Corn, %	53.2	38.8	24.4	10.1	
Wheat, %	13.4	16.7	20.1	23.4	Wheat, %	8.9	22.4	35.8	49.3	
Soy meal, %	16.2	13.9	11.5	9.2	Oats, %	10.2	6.8	3.4	-	
Fat blend. %	1.0	1.6	2.3	2.9	Soy meal, %	13.2	11.5	9.7	7.9	
Sainfoin %	_	5.0	10.0	15.0	Fat blend, %	0.1	1.3	2.5	3.6	
					Sainfoin, %	-	5.0	10.0	15.0	
Analyzed nutrient composition (g/kg DM)					Analysed nutrient composition (g/Kg DM)					
Crude protein	163.8	163.1	159.7	161.2	Crude protein	156.8	154.5	153.1	151.3	
Lysine	10.4	10.6	10.7	10.9	Lysine	8.7	8.9	9.1	9.2	
Methionine	3.0	3.1	3.2	3.4	Methionine	2.5	2.5	2.5	2.6	
Threonine	6.6	6.7	6.9	7.0	Threonine	5.6	5.7	5.9	6.0	
Crude fat	36.7	44.5	52.3	60.2	Crude fat	50.0	52.7	55.4	58.1	
Crude fiber	33.8	35.9	38.0	40.1	Crude fiber	44.1	43.4	42.6	41.8	
Digestible energy (MJ/kg DM)	13.5	13.5	13.5	13.5	Digestible energy (MJ/kg DM)	13.5	13.5	13.5	13.5	

0

N - balance

Traits of interest

 Growth perf 	ormance	♦ N-k	palance
(from 25 - 110 kg	g BW)	(at 5	0 and 75 kg BW)
 ADG ADFI G:F ratio Digestibility (at 50 and 75 kg 	BW)	0 0 0 0	N-intake N-feces N-urine N-total excretion N-body retention Urea in urine
• DM • N	Data analysis with Anova Fixed effect:	th SAS 9.3 I groups	3

Results - Growth performance

	Experimental groups							
			т0	Т5	T10	T15	SE	P-value
25 -	ADG	kg/d	0.91	0.84	0.92	0.87	0.06	0.42
60 kg	ADFI	kg/d	1.85	1.75	1.91	1.79	0.12	0.39
BW	G:F	kg/kg	0.49	0.48	0.48	0.49	0.02	0.87
- 09	ADG	kg/d	0.96	0.90	0.99	0.99	0.04	0.34
105 k	ADFI	kg/d	2.52	2.37	2.65	2.50	0.17	0.33
g BW	G:F	kg/kg	0.38	0.38	0.38	0.40	0.02	0.50
20 -	ADG	kg/d	0.94	0.87	0.96	0.94	0.05	0.31
105 kg BW	ADFI	kg/d	2.22	2.09	2.32	2.17	0.13	0.23
	G:F	kg/kg	0.42	0.42	0.41	0.43	0.01	0.53

ADG: Average daily gain; ADFI: Average daily feed intake; G:F: Gain to feed ratio

Results - Intake and digestibility of DM and N

	Experimental groups								
		то	Т5	T10	T15	SE	P-value		
	Daily intake (gr/d)								
50	DM	1587	1597	1586	1484	85.8	0.77		
- 53	Ν	46.6	46.0	45.3	42.7	2.5	0.69		
kg BW	Digestibility (%)								
	DM	88.1ª	85.8 ^b	85.7 ^b	86.2 ^{ab}	0.55	0.02		
	Ν	87.0ª	80.5 ^b	79.9 ^b	79.0 ^b	1.15	<0.001		
75 - 79 kg BW	Daily intake (gr/d)								
	DM	2133	1907	2132	1874	229.9	0.40		
	Ν	59.0	52.1	58.3	51.2	6.3	0.35		
	Digestibility (%)								
	DM	89.7ª	87.5 ^b	86.0 ^{bc}	85.3 ^c	0.50	< 0.001		
	N	90.2ª	85.4 ^b	82.1°	80.8 ^c	0.83	< 0.001		

DM: Dry matter; N: Nitrogen

Results - N-intake and N-excretion in the grower period

Results - Total N-excretion and N-body retention

Results - N-intake and N-excretion in the finisher period

Results - Total N-excretion and N-body retention

Results - Urinary urea concentration

Conclusions

Increasing levels of CT from Sainfoin

- Reduced urinary N excretion by
 - 31.5% in the grower period
 - **32.3%** in the finisher period
- Increased fecal N excretion by
 - 48.2% in the grower period
 - **78.8%** in the finisher period

Future studies?

Thank you for your attention

Agroscope good food, healthy environment