Breeding objectives of maternal and direct pig traits calculated applying gene-flow method

Krupa. E., Krupová Z., Žáková E., Wolfová M.

Institute of animal Science, Prague, Czech Republic

Brief Intro

What does mean Economic Weight (EW)?

How to calculate

Authors: Wolf J., Wolfová M., Krupa E., Krupová Z., Žáková E. (www.vuzv.cz)

Metods

- Bio-economic model for marginal economic values: (Wolfová et al., 2017 Liv. Sci., researchgate.net -> search: "ecoweight pig manual")
- Number of Discounted Genes Expressions
 - Gene Flow (Hill, 1974 Anim. Prod.; Danell et al., 1976, Acta Agric. Scand.)
 - Flow of genes through population over time
 - Sex-age classes
 - Realization vectors
 - Direct, Maternal traits

$$m{P} = egin{bmatrix} m{P}_{11} & m{P}_{12} & ... & m{P}_{1n} \ m{P}_{21} & m{P}_{22} & ... & m{P}_{2n} \ dots & dots & dots & dots \ m{P}_{n1} & m{P}_{n2} & ... & m{P}_{nn} \end{bmatrix}$$

Data

- Production system of pigs: (Krupa et al., 2017 Liv. Sci.)
- Genetic evaluation of pigs in CR: (Krupa et al., 2016 Liv. Sci.; Krupa and Wolf 2013 Czech J. Anim. Sci.)
- Traits D: daily gain, age at first mating, conception rate, survival rate, dressing percentage, lean meat content, and feed conversion
- Traits M: number of piglets born alive, survival rate of piglets at birth and until weaning, conception rate of sows, and productive lifetime of sows.
- Inv.: 8 years; Discount rate: 2%

1%

Take home message

- The presented gene-flow method enables calculation of the relative economic importance
- considering the whole population structure of pig crossbreeding systems
- considering the time delay between selection in purebred parental populations and trait expressions in several purebred and crossbred progeny generations.
- gene-flow method could be foregone when estimating the relative economic importance of pig traits.
- cannot be generalised for other pig breeding systems without further studies.

Fufure

- Ecoweight package
 - -new traits
 - Non market values
- EcoWeight another livestock
 - Rabbits (EwRab) on the way
 - Aquaculture: far future
- EcoWeight -> web based application

Thank you for Your attention

EcoWeight developer team

EcoWeight is:

- open source
- freelly available
- on request from the authors:

j-m-wolf@gmx.de

krupa.emil@vuzv.cz

$m^t = P^t \times m^0$

$$msum = \sum_{t=1}^{inv} m^t \times (1+u)^{-t}$$

Sires of breed PN		Sires of breed CL	
Sex-age classes for PN	NDEs	Sex-age classes for CL sires	NDEs
sires			
1	1.256	1	1.398
2	1.164	2	1.299
3	2.053	3	2.183
4	1.944	4	2.069
5	1.836	5	1.957
6	1.731	6	1.850
7	1.629	7	
8	1.530		
Slaughter animal PN	1.256	Slaughter animal CL	1.399
Slaughter animal (CLW ×	0.871	Slaughter animal CLW × CL	0.980
CL) × PN			
		Slaughter animal (CLW ×	0.329

Sex-age classes for PN		Sex-age classes for CL	
dams		dams	
1	1.256	1	1.398
2	1.164	2	1.299
3	1.073	3	1.203
4	0.982	4	1.108
5	0.894	5	1.015
6	0.870	6	0.926
7	0.724	7	0.838
8	0.642	8	0.750
9	0.567	9	0.666
10	0.504	10	0.582
		11	0.504
		12	0.444