

Faculty of Agricultural and Nutritional Science

Christian-Albrechts-University Kiel

Institute of Animal Breeding and Husbandry

Behavioural tests: suitable indicators for measuring the affective state of growing pigs?

K.L. Krugmann, F.J. Warnken, I. Czycholl, J. Krieter

Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Germany

69th Annual EAAP Meeting Dubrovnik, Croatia 27th to 31st August 2018

> Session 08, Abstract number 28534, kkrugmann@tierzucht.uni-kiel.de

Are HAT and NOT suitable indicators?

- Slide 2
- Necessity: Establishment of objective measurements for animal welfare

 \rightarrow Especially for the positive affective state (Marcet Rius et al., 2018)

• Behavioural tests for assessing the level of anxiety in animals (e.g. Murphy et al., 2014; Hemsworth and Coleman, 1998)

Animals and housing

- Data collection: November 2016 September 2017
- 297 fattening pigs (LW x LR x Pi)
- Two batches
- Two different housing systems (three farms)
- Housing systems differ respecting availability of:
 - \rightarrow Barren or enriched habitat
 - \rightarrow Space/animal (m²/pig)
 - \rightarrow Climatic conditions

Slide 3

Barren _ habitat

Enriched

habitat

Implementation of HAT and NOT

- Each pig separate in the home pen
- Two minutes for acclimation
- Three minutes of test time
- Notification of physical contacts:
 - \rightarrow Approach latency (AL) (s)
 - \rightarrow Duration of contacts (DC) (s)
 - \rightarrow Number of contacts (NC)
- Points of test (Pot): Three times during fattening

У

G

Statistical analysis

Slide 5

- SAS[®] 9.4 (SAS Institute Inc., 2017)
- Log10 (x+1) transformation of the data
- Linear mixed model (PROC MIXED):

 $= \mu + F_i + B_{ii} + Pot_{ik} + G_l + ani_{iilm} + e_{iiklmn}$ y_{ijklmn}

- = nth observation of test behaviour
- µ F_i B_{ij} Pot_{ik} = general mean
 - = fixed effect of i^{th} farm (i = 1-3)
 - = fixed effect of j^{th} batch (j = 1,2) within the i^{th} farm (i = 1-3)
 - = fixed effect of kth point of test (k = start, middle, end) within the ith farm (i = 1-3)
 - = fixed effect of I^{th} gender (I = female, male)
 - = random effect of mth animal within the ith farm, jth batch (j = 1,2) and lth gender
- ani_{iilm} = random residual errors e_{ijklmn}
- Statistical significance at p < 0.05

Introduction • Materials & Methods • Results & Discussion • Conclusion

HAT approach latency (AL) (s)

Slide 6

^{A,B,C:} Indicate significant differences between the farms within each point of test (p<0.05) ^{a,b,c:} Indicate significant differences between each point of test within the farms (p<0.05)

Introduction - Materials & Methods - Results & Discussion - Conclusion

NOT approach latency (AL) (s)

Slide 7

^{A,B,C:} Indicate significant differences between the farms within each point of test (p<0.05) ^{a,b,c:} Indicate significant differences between each point of test within the farms (p<0.05)

HAT duration of contacts (DC) (s)

Slide 8

Human approach test - duration of contact (s) at the different points of test

A,B,C: Indicate significant differences between the farms within each point of test (p<0.05) a,b,c: Indicate significant differences between each point of test within the farms (p<0.05)

Introduction • Materials & Methods • Results & Discussion • Conclusion

NOT duration of contacts (DC) (s)

Slide 9

^{A,B,C:} Indicate significant differences between the farms within each point of test (p<0.05) ^{a,b,c:} Indicate significant differences between each point of test within the farms (p<0.05)

Introduction - Materials & Methods - Results & Discussion - Conclusion

Are HAT and NOT suitable indicators?

Approach latency (AL) (s):

- HAT \rightarrow Lower AL (s) in the barren housing system (2./3. Pot)
- NOT→ Lower AL (s) in the barren housing system (3. Pot) (e.g. Casal-Plana et al., 2017; Bracke and Spoolder, 2008; Stolba and Wood-Gush, 1980)

Duration of contact (DC) (s):

- HAT \rightarrow Longer DC in the barren housing system (2./3. Pot)
- NOT→ Similar DC on Farm 1 and Farm 3 (1.-3. Pot)

 \rightarrow Lowest DC on Farm 2 (1.-3. Pot)

(e.g. Bracke and Spoolder, 2008; Wemelsfelder et al., 2000)

Slide 10

Are HAT and NOT suitable indicators?

Slide 11

• HAT and NOT to assess the level of anxiety

(e.g. Murphy et al., 2014; Hemsworth and Coleman, 1998)

- HAT and NOT do not measure the same animal characteristics (Boivin et al., 1992)
- HAT and NOT might be suitable to show the level of motivation to explore? (Stolba and Wood-Gush, 1980)
- High/low level of motivation to explore = negative/positive affective state?
- \rightarrow HAT and NOT \neq autonomous reliable indicators for identifying positive emotions

Thank you for your attention!

Slide 12

With support from

Federal Ministry of Food and Agriculture

by decision of the German Bundestag

Boivin, X., Le Neindre, P., Chupin, J.M. (1992): Establishment of cattle–human relationships. *Applied Animal Behaviour Science* 32, P. 325–335.

Bracke, M., Spoolder, H. (2008): Novel object test can detect marginal differences in environmental enrichment in pigs. *Applied Animal Behaviour Science* 109 (1), P. 39–48.

Casal-Plana, N., Manteca, X., Dalmau, A., Fàbrega, E. (2017): Influence of enrichment material and herbal compounds in the behaviour and performance of growing pigs. *Applied Animal Behaviour Science* 195, P. 38–43.

Hemsworth, P.H., Coleman, G.J. (1998): Human–Livestock Interactions: The Stockperson and the Productivity of Intensively Farmed Animals. CAB International, Wallingford, UK.

Marcet Rius, M., Cozzi, A., Bienboire-Frosini, C., Teruel, E., Chabaud, C., Monneret, P. (2018): Selection of putative indicators of positive emotions triggered by object and social play in mini-pigs. *Applied Animal Behaviour science* 202, P. 13-19.

Murphy, E., Nordquist, R.E., van der Staay, F.J. (2014): A review of behavioural methods to study emotion and mood in pigs, *Sus scrofa. Applied Animal Behaviour Science*. P. 9-28.

Stolba, A., Wood-Gush, D.G.M. (1980): Arousal and exploration in growing pigs in different environments. *Applied Animal Ethology*, P. 382-383.

Wemelsfelder, F., Haskell, M., Mendl, M.T., Calvert, S., Lawrence, A.B. (2000): Diversity of behaviour during novel object tests is reduced in pigs housed in substrate-impoverished conditions. *Animal Behaviour* 60 (3), P. 385–394.