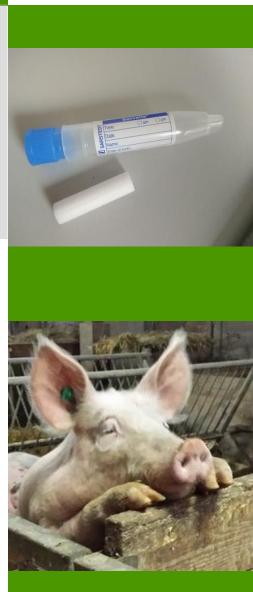


Faculty of Agricultural and Nutritional Science Christian-Albrechts-University

Kiel
Institute of Animal Breeding and Husbandry

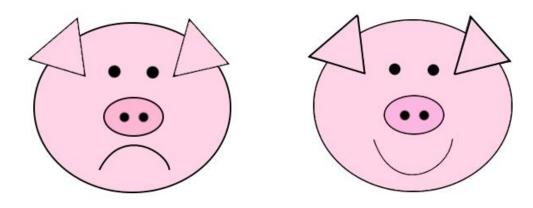

Measuring the affective state in pigs: the role of immunoglobulin A

F. Warnken¹, K. Krugmann¹, I. Czycholl¹, R. Lucius², A. Tholey³, J. Krieter¹

¹ Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Germany
 ² Institute of Anatomy, Christian-Albrechts-University Kiel, Germany
 ³ Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Germany

69th Annual EAAP Meeting Dubrovnik, Croatia 27th to 31st August 2018

> Session 8, Abstract number 28533, fwarnken@tierzucht.uni-kiel.de



The affective state

- Growing consumers' wish: products from animal friendly housing (Roex & Miele, 2005)
- Affective state as important part of animal welfare (Vanhonacker et al., 2008)
- Low reliability and high subjectivity of existing measurement methods (Czycholl et al., 2017)

→ Need for objective indicators to measure the animals affective state (Webster, 2005)

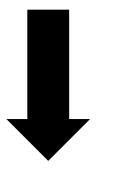
Aim of the present study

- Immunoglobulin A (IgA) in human studies
 - Humor arousal increases IgA concentration in human saliva (McClelland & Cheriff, 1997)
 - Reduction of salivary IgA in stress conditions (Afrisham et al., 2016)
- Pigs as an often described animal model for humans
 - Similar oral maxillofacial region (Wang et al., 2007)
 - Porcine immune system resembles humans for >80% (Dawson, 2011)

IgA concentration in saliva = reliable indicator to measure the affective state of pigs?

Animals & housing

- 288 cross breed ((LW x LR) x Pi) fattening pigs
 - 125 male
 - 163 female
- Three different housing systems in Northern Germany
 - Conventional system
 - Straw interspersed indoor and outdoor area
 - Straw interspersed indoor and outdoor area + rooting area
- Two batches (summer, winter)
- Undocked, castrated (males)



Saliva sampling & analysis

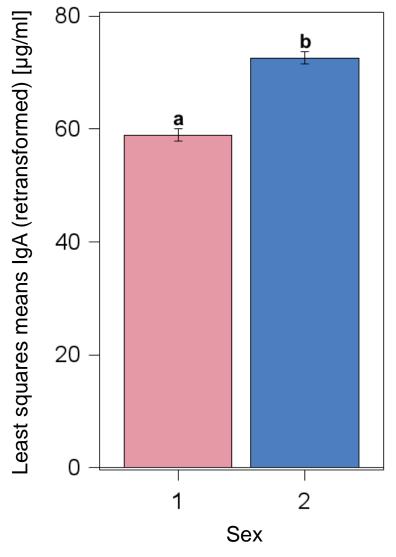
- End of final fattening (body weight ~ 100kg)
- Synthetic fiber role (Cortisol-Salivette®, Sarstedt AG & Co, Nümbrecht Germany)
- Immediate freezing

- Defreezing & centrifugation (1000xg, 20°C, 2 min)
- Direct quantitative sandwich-ELISA-Kit for pig-IgA (Celltrend GmbH, Luckenwalde – Germany)

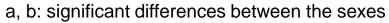
Statistical analysis

- SAS[®] 9.4 (SAS Institute Inc., 2017)
 - Log10-transformation for normal distribution
 - Linear mixed model (PROC MIXED)

$$y_{ijkl} = \mu + F_i + S_j + B_{ik} + e_{ijkl}$$

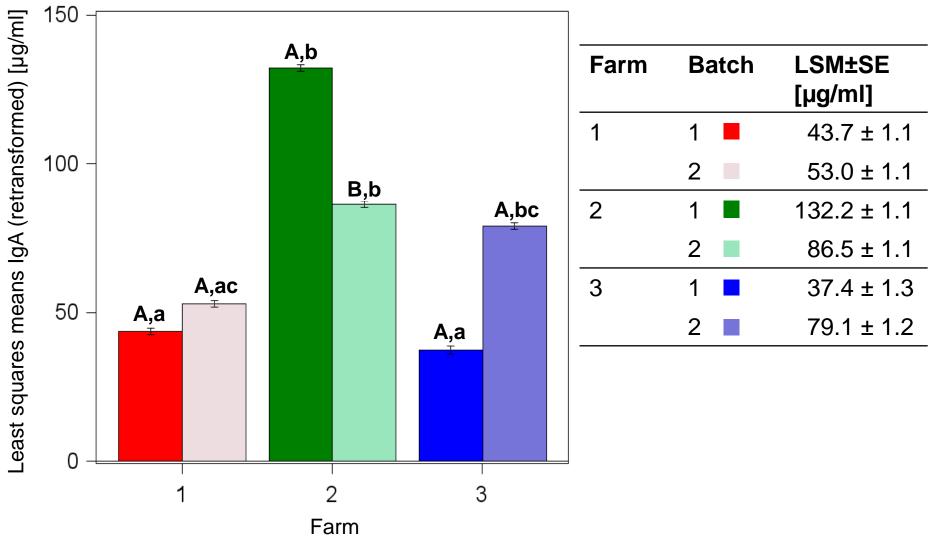

 $y_{ijkl} = I^{th}$ observation of the log10-IgA concentration (I = 1,..., 288) μ = general mean

- F_i = fixed effect of the ith farm (i = 1, 2, 3)
- S_j = fixed effect of the jth sex (j = 1 (female), 2 (male))
- \dot{B}_{ik} = fixed effect of the kth batch within the ith farm (k = 1, 2)
- e_{ijkl}= random residual error
- Significance level: 5%



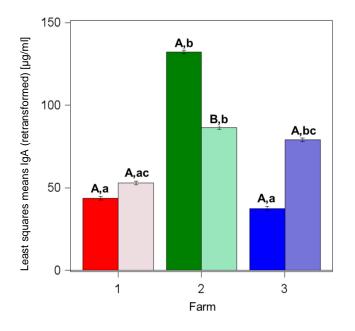
Introduction • Materials & Methods • Results • Discussion • Conclusion

Effect of sex


Sex	LSM ± SE [µg/ml]
Female	58.9 ± 1.1
Male	72.6 ± 1.1

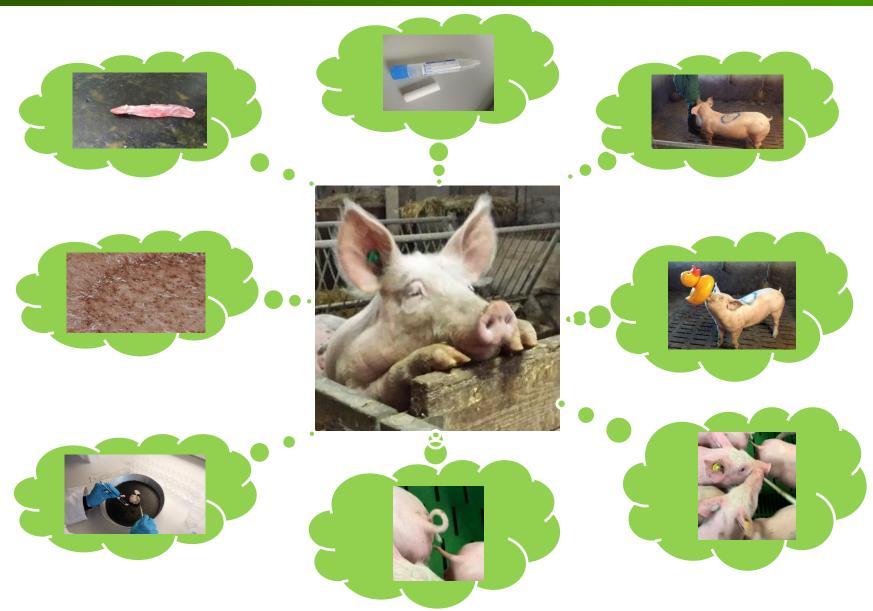
8

Effect of batch within the farm


a - c: significant differences between the farms within the batches

IgA = suitable indicator?

- Effect of sex
 - Influence of sex hormones (Gaillard & Spinedi, 1998)
 - → Estrogen = IgA↑, androgen = IgA↓ (Grossmann, 1984)
 - → Castration (Grossmann, 1984)
- Effect of batch within the farm
 - Different environments: barren vs. enriched
 - \rightarrow Affective state (Bosch et al., 2004)
 - \rightarrow Health (Kelley, 1980, Neville, 2008)
 - → Interindividual, e.g. genetics (Calder & Kew, 2002, Mangino et al., 2017)



10

Outlook

Thank you for your attention!

With support from

Federal Ministry of Food and Agriculture

Projektträger Bundesanstalt für Landwirtschaft und Ernährung

H. WILHELM SCHAUMANN STIFTUNG

by decision of the German Bundestag

References

[1] Fraser, D., 2008. Understanding animal welfare. Acta Veterinaria Scandinavica.

[2] Roex, J. & Miele, M., 2005. Farm Animal Welfare Concerns: Consumers, Retailers and Producers. Cardiff University, School of City and Regional Planning, Cardiff, Wales, UK.

[3] Vanhonacker, F., Verbeke, W., Van Pouke, E., Tuyttens, Frank A.M., 2008. Do citizens and farmers interpret the concept of farm animal welfare differently? Livestock Science 116,126-136.

[4] Czycholl, I., Beilage, E.G., Henning, C., Krieter, J., 2017. Reliability of the qualitative behavior assessment as included in the Welfare Quality Assessment protocol for growing pigs. Journal of animal science 95, 3445–3454.

[5] Webster, J., 2005. The assessment and implementation of animal welfare: theory into practice. Revue scientifique et technique (International Office of Epizootics), 723–734.

[6] McClelland, D.C. & Cheriff, A.D., 1997. The immunoenhancing effects of humor on secretory IgA and

resistance to respiratory infections. Psychology & Health, 12:3, 329-344.

[7] Afrisham, R., Aberomand, M., SoliemaniFar, O., Kooti, W., Ashtary-Larky, D., Alamiri, F., Najjar-Asl, S., Khaneh-Keshi, A., Sadeh-Nejadi, S., 2016: Levels of salivary immunoglobulin A under psychological stress and its relationship with rumination and five personality traits in medical students. The European Journal of Psychiatry, vol. 30, no. 1.

[8] Wang, S., Liu, Y., Fang, D., Shi, S., 2007. The miniature pig: a useful large animal model for dental and orofacial research. Oral diseases 13: 530-537.

[9] Dawson, H., 2011. A comperative assessment of the pig, mouse, and human genomes: structural and functional analysis of genes involved in immunity and inflammation. The minipig in Biomedical research (McAnulty, P.A., ed.), CRC Press, Taylor & Francis Group, pp. 321-341.

[10] Gaillard, R.C., Spinedi, E., 1998. Sex- and stress-steroids interactions and the immune system: evidence for a neuroendocrine-immunological sexual dimorphism. Domestic Animal Endocrinology 15, 345–352.

[11] Grossmann, C.J., 1984. Regulation of the Immune System by Sex Steroids. Endocrine Reviews.

[12] Chandra, R., K., 1997. Nutrition and the immune system: an introduction. American Journal of Clinical Nutrition.

[13] Bosch, J.A., Ring, C., Amerongen, A.V.N., 2004. Academic examinations and immunity: academic stress or examination stress? Psychosomatic Medicine, 625–627.

[14] Kelley, K.W., 1980. Stress and Immune function: a bibliographic review. Annales de Recherches Vétérinaires, Inra Editions, 445–478.

[15] Neville, V., Gleeson, M., Folland, J.P., 2008. Salivary IgA as a Risk Factor for Upper Respiratory Infections in Elite Professional Athletes. Medicine & Science in Sports & Exercise 40, 1228–1236.

[16] Calder, P.C., Kew, S., 2002. The immune system: a target for functional foods? BJN 88, 165-176.

[17] Mangino, M., Roederer, M., Beddall, M.H., Nestle, F.O., Spector, T.D., 2017. Innate and adaptive immune traits are differentially affected by genetic and environmental factors. Nature communications 8, 13850.

Attachment

- Feeding conditions
 - Farm 1
 - \rightarrow 16.5 % (foremast) 15.5% (final fattening) raw protein
 - \rightarrow Main protein supply: soy extraction meal
 - Farm 2
 - \rightarrow 22.4% (foremast) 15.4% (final fattening) raw protein
 - \rightarrow Main protein supply: field beans, peas, potato protein
 - Farm 3
 - \rightarrow 20.5% raw protein
 - \rightarrow Main protein supply: field beans