

Conservation genomics in the management of the Mouflon population from the hunting area Kalifront

Cubric-Curik Vlatka¹, Oršanić Milan², Ugarković Damir², Ferenčaković Maja¹, Curik Ino¹

¹Department of Animal Science - Faculty of Agriculture & Department of Forest ²Ecology and Silviculture - Faculty of Forestry, University of Zagreb, Croatia

Kalifront - Rab: open state hunting area (13,51 km²)

1998 : **41** mouflons (**33 F** + **8 M**)

Current population size ≈ 270 mouflons (1.35 F : 1 M)

Observed decline in trophy values & body weight \rightarrow last 10 years

Aims of this study

- 1. To estimate genomic level of inbreeding
- 2. To estimate effective populations size
- 3. To analyse ticks paralysis lethality by autozygosity mapping

Materials & methods

Data and molecular analysis

- Our sample:
 - 32 Rab mouflons OvineSNP50 BeadChip (Illumina)
- Public data used:

EU mouflon, Sardinian mouflon, Soay sheep,

Finnsheep, Australian Merino, Churra and

Sardinian White

Dryad digital repository: <u>http://dx.doi.org/10.5061/dryad.2p0qf</u>

Genomic analysis

OvineSNP50 Genotyping BeadChip

54,241 SNPs

Gap Size mean = 50.9 kb median = 42.6 kb

Data editing and cleaning in PLINK

- GT score > 0.4
- GC score > 0.7
- Mind < 0.05
- Geno < 0.1

47708 polymorphic and 2549 monomorphic loci on autosomes

Estimation of genomic (ROH) inbreeding

- Ferenčaković et al., 2013 GSE
- Software: SVS (SNP Variation Suite).

An **ROH** is defined as a continuous (uninterrupted) stretch of DNA sequence without heterozygosity in diploid state.

ROH length (*k*): >4Mb, >8Mb, >16Mb, 4-8Mb

ROH (Mb)	4	8	16
E[common Ancestor]	12.5	6.25	3.13

Estimation of inbreeding effective population size

 Gorjanc et al., (2018): presented within "Optimization of a genomic breeding program for small sized cattle populations"

Autozygosity mapping

- Charlier et al., 2008; Drogemuller et al., 2011

Results – Genomic inbreeding level

	<12.50G	<6.25G	<3.13G	6.25–12.50G
Population	F _{ROH>4Mb}	F _{ROH>8Mb}	F _{ROH>16Mb}	F _{ROH4-8Mb}
EU mouflon	0.318	0.235	0.137	0.083
Rab mouflon	0.205	0.120	0.050	0.086
Soay	0.126	0.056	0.017	0.071
Sardinia mouflon	0.073	0.062	0.046	0.011
Finnsheep	0.053	0.034	0.016	0.019
Australian Merino	0.052	0.033	0.016	0.019
Churra	0.043	0.030	0.017	0.012
Sardinian White	0.035	0.022	0.010	0.013

ROHoGram: >4 Mb, 26 autosomal chromosomes

Australian Merino Churra **Finnsheep** Soay 🛓 -Sardinian White and the second **European Mouflon Sardinian Mouflon** <u>en en e</u> Rab Mouflon

Results – inbreeding effective population size

$$Ne_{FROH>LMb} = rac{\# \text{ generations as } f(LROH)}{2\sum_{gt0}^{gtb} \Delta F}$$

$$F_{ROH>8Mb} = 0.120;$$

$$\Delta F_{ROH} = 0.12/6.25 = 0.0192$$

$$=> NeF_{ROH} = 1/(2\Delta F_{ROH}) = 26.0$$

 $Ne_{x} = 4N_{eM}N_{eF}/(N_{eM}+N_{eF}) = (4833)/(8+33) = 25.8$

Results – ticks paralysis deaths autozygosity mapping

5 tick paralysis dead versus 27 healthy mouflons

Tick paralysis deaths: no simple cause – lethal recessive homozygosity

Conclusions

- 1. High inbreeding estimated
- 2. High inbreeding effective population size estimated
- 3. Most likely recessive single gene lethality not a cause of ticks paralysis lethality (more complex inheritance?)

Population refreshment needed/suggested!

This year new 33 animals (20 F + 13 M) were bought at XCell farm in Slovakia!

Genotyping of introduced mouflons (Illumina BeadChip) will enable evaluation of the introgression (refreshments) effects

Thank you for your attention !