by Hamiltonian Monte

This study compared the performance of estimating genetic parameters for

Gibbs sampling (GS), Hamiltonian Monte Carlo (HMC) and No-U-Turn
Sampler (NUTS) in both simulated and real pig data.

¢ HMC

HMC is a Metropolis algorithm which uses Hamiltonian dynamics to create proposals.

H®,p) = U®O) + K(p)

Hamiltonian Potential energy Kinetic energy
Let £(0) be the posterior of parameter 0. Let p be an auxiliary momentum

following a standard normal distribution. In HMC, U(B) and K(p) are defined as

UB) =—f(0) and K(p)=p'p/2. The joint density of (0, p) has the form:
1
f(6,p) o exp (f (0) — Ep’p> = exp(—=U(8) — K(p)) = exp(—H(6,p))

HMC draws from the joint space of (0, p), discards p, and retains @ as samples from f(0). Results
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& Simulated data

» The data were generated by using QMSim. (Sargolzaei & Schenkel, 2009)
» Infinitesimal model

» Population size: 1000 (500 males and 500 females)

» True heritability: 0.2 (Phenotypic variance: 1.0)

» Replicate: 5

» Fixed effect: sex

& Pig data
» Duroc purebred pigs at the National Livestock Breeding Center In Japan.
» 1,521 pedigree data and 991 records
» Trait: backfat thickness (BF) and loin eye muscle (LEA)
» Fixed effect: sex (three classes; boar, barrow and gilt)
generation (seven classes)

variable

At each Iteration, the HMC algorithm first generates the variables p and then follows with @ Trace plot and posterior density of heritability

a Metropolis update that includes many leapfrog steps along a trajectory while maintaining

the total energy of the system.

» Simulated data
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& First-order derivatives for log posterior

X'(y — Xb — Za) n, a'd'a

_|_

—logp(Bly) = logp(@ly) =

& Estimates of heritability (SD) and effective sample size (ESS)

db o2 do? 202" 207 Ivlethod _
d A 'a 7' Xb — Z Simulated 0.21 (0.05)
- —logp(0ly) = Za | (= . — 23) ng: number of animals data HI\/IC 0.25 (0.05) 88
2 Ja Je n: number of records NUTS 0.22 (0.05)
n (y—Xb-—Za) (y— Xb — Za) ———
*s ' NUTS 0.49 (O 06) 259
ampling | o | GS 0.57 (0.07) 142
> lteration: 10,000 (The first 1,000 iterations were discarded) HMC ) )
» Hyperparameter : € =0.01 and L=100 (simulated data) NUTS 0.57 (0.07) 933

(HMC) €=0.001~10 and L = 3~200 (p1g data)

Conclusions

» NUTS was computationally efficient approach

» HMC might required hands-on tuning of hyper
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> HMC could not estimate heritability in pig data.
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parameters according to a trait and a population structure.
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