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This study compared the performance of estimating genetic parameters for

Gibbs sampling (GS), Hamiltonian Monte Carlo (HMC) and No-U-Turn

Sampler (NUTS) in both simulated and real pig data.

Data 

➢ Duroc purebred pigs at the National Livestock Breeding Center in Japan.

➢ 1,521 pedigree data and 991 records

➢ Trait: backfat thickness (BF) and loin eye muscle (LEA)

➢ Fixed effect: sex (three classes; boar, barrow and gilt)

generation (seven classes)

➢ The data were generated by using QMSim. (Sargolzaei & Schenkel, 2009) 

➢ Infinitesimal model

➢ Population size: 1000 (500 males and 500 females)

➢ True heritability: 0.2 (Phenotypic variance: 1.0)

➢ Replicate: 5

➢ Fixed effect: sex

◆Simulated data

◆Pig data
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◆Univariate animal model

𝐚 ~ N 𝟎, 𝐀𝜎𝑎
2 , 𝐞 ~ N(𝟎, 𝐈𝜎𝑒

2)

◆First-order derivatives for log posterior

𝑛𝑞: number of animals

𝑛: number of records

◆Sampling

➢ Iteration: 10,000 (The first 1,000 iterations were discarded)

➢ Hyperparameter  : ε = 0.01 and L=100 (simulated data)

(HMC)   ε = 0.001~10 and L = 3~200 (pig data)
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Trait Method Estimates ESS

Simulated

data

GS 0.21 (0.05) 77

HMC 0.25 (0.05) 88

NUTS 0.22 (0.05) 157

BF

GS 0.48 (0.06) 164

HMC - -

NUTS 0.49 (0.06) 259

LEA

GS 0.57 (0.07) 142

HMC - -

NUTS 0.57 (0.07) 233
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◆Trace plot and posterior density of heritability

➢ Simulated data

➢ BF

◆Estimates of heritability (SD) and effective sample size (ESS)

Results

GS

HMC

NUTS

GS

NUTS

➢ NUTS was computationally efficient approach in the field of animal breeding.

➢ HMC might required hands-on tuning of hyperparameters according to a trait and a population structure.

※ HMC could not estimate heritability in pig data.

Theory

𝒕 = 𝟏

𝒕 = 𝟐
𝒕 = 𝟑

2.5

1.0

0.5

-0.5-2.0 1.0

Posterior density of 𝜽
Position

Momentum

HMC is a Metropolis algorithm which uses Hamiltonian dynamics to create proposals.

𝐻 𝛉, 𝐩 = 𝑈 𝛉 + 𝐾(𝐩)
Hamiltonian Potential energy Kinetic energy

Let 𝑓 𝛉 be the posterior of parameter 𝛉. Let 𝐩 be an auxiliary momentum variable

following a standard normal distribution. In HMC, 𝑈 𝛉 and 𝐾 𝐩 are defined as

𝑈 𝛉 = −𝑓(𝛉) and 𝐾 𝐩 ＝𝐩′𝐩/2. The joint density of 𝛉, 𝐩 has the form:

𝑓 𝛉, 𝐩 ∝ exp 𝑓 𝛉 −
1

2
𝐩′𝐩 = exp −𝑈 𝛉 − 𝐾(𝐩) = exp(−𝐻 𝛉, 𝐩 )

HMC draws from the joint space of 𝛉, 𝐩 , discards 𝐩, and retains 𝛉 as samples from 𝑓 𝛉 .

At each iteration, the HMC algorithm first generates the variables 𝐩 and then follows with

a Metropolis update that includes many leapfrog steps along a trajectory while maintaining

the total energy of the system.

Leapfrog step (step size: 𝜀, number of steps: 𝐿)

Move by random number from univariate normal distribution

𝒕 𝑯 𝜽, 𝒑

1 24 （2.5，1.0）

2 24 （1.0，-2.0）

3 14 （0.5，-0.5）

𝒕 𝜽

1 2.5

2 1.0

3 0.5

HMC is a powerful algorithm because it will achieve a high level of acceptance ratio and

requires only first-order posterior information for the leapfrog step. However, its

performance depends strongly on choosing suitable values for two tuning parameters: 𝜀
and 𝐿.

◆HMC

◆NUTS
Iteration Heritability

Iteration Heritability

NUTS automatically selects an appropriate value of 𝐿 in each iteration in order to

maximize the distance at each leapfrog step and avoid the random-walk behavior. Let 𝑄 be

the half the squared distance between the current position 𝛉∗ and the initial position 𝛉 at

each leapfrog step. The motivation is to run leapfrog steps until 𝛉∗ starts to move back

towards 𝛉 (U-Turn). This is accomplished by the algorithm in which one runs leapfrog

steps until the derivative of 𝑄 with respect to step (𝜏) becomes less than 0:

𝜕𝑄

𝜕𝜏
=

𝜕

𝜕𝜏

(𝛉∗ − 𝛉)′(𝛉∗ − 𝛉)

2
= (𝛉∗ − 𝛉)′𝐩 < 0

NUTS automatically tunes ε by applying dual averaging algorithm (Nesterov, 2009) to

obtain the high acceptance ratio.


