

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Assessing Nanopore Sequencing for Detection of Large Structural Variation in the Goettingen Minipig

© Ellegaard Göttingen Minig

J. Geibel^{1*}, S. Hansen^{2*}, A. Abdelwahed², S. Böhlken-Fascher², A. R. Sharifi¹, C.-P. Czerny², H. Simianer¹ & C. Reimer¹

Background and Aim

- Structural variation is expected to underlie severe phenotypic differences
- Large structural variants are not directly observable from short sequencing reads $^{[1]} \rightarrow$ validating results is challenging
- Latest developments in long read sequencing technologies promise increased accuracies and read lengths up to mega bases, possibly spanning structural variants^[1]

Conclusions

- Preliminary results, especially the achieved read lengths, are promising for a larger scaled use of nanopore sequencing for detection of structural variants in farm animals
- Strong increase in coverage is necessary for reliable results
- ID² calling and barcoding lead to avoidable yield losses for mammalian genomes
- ⇒ Future strategy: Combination of unsheared 1D library (ultra long
- \Rightarrow Assessment of nanopore sequencing performance for a **Goettingen Minipig trio on a MinION device**
- ⇒ Evaluation of usability for detection of large structural variants

reads) and sheared 1D library (increased yield and quality) without any barcoding, potentially in combination with short Illumina reads

General Approach

Sampling of blood from a trio of Goettingen Minipigs

https://nanoporetech.com/products/minion

Results

- $1D^2$ sequencing protocol \rightarrow complementary strand sequenced after template strand
- Shearing for 10 kb fragments
- FLO-MIN R9.5.1 flowcell
- **1D** rapid barcoding sequencing protocol \rightarrow only template strand is sequenced
- Random shearing
- FLO-MIN R9.5.1 flowcell

- Base calling with Albacore 2.3.4
- Alignment against Sscrofa11.1 with minimap2 2.15^[2]
- Quality Control with NanoPlot 1.20.1^[3] and poretools 0.6.0^[4]
- Individual based structural variant detection (>50bp) with SNIFFLES 1.0.11^[5]
- Population-wide structural variant calling with SNIFFLES 1.0.11^[5] and SURVIVOR 1.0.7^[6]

Fig. 1: Read length vs. read quality from the 1D barcoded sequencing.

- ID² workflow with only 71 / 512 active pores \rightarrow not satisfying yield of 121 Mb / 21 h
- ID workflow with 508 / 512 active pores
- \rightarrow 5.6 Gb / 25 h, could be increased with longer runtimes
- Only 1 Mb 1D² consensus reads could be restored from 121 Mb 1D reads

- Coverage < 0.3 X for parents and 0.73 X for offspring</p>
- > 50 % of coverage due to reads > 10kb
- 30 % of reference genome uncovered (Fig. 2 A)
- 110,950 structural variants (> 50 bp) called when requesting one supporting read
- 436 structural variants (> 50 bp) called when requesting five supporting reads
- 237 structural variants (\geq 5 supporting reads) segregating in all animals

• Mostly insertions and deletions between 100 and 1000 bp (Fig 2 B)

- De-barcoding failed for 50 % of the reads (2 Mb out of 5.6 Mb) Average phred-scaled read quality of 7.9 (83 % read accuracy; Fig. 1)
- ID² increased read quality to 9.5 (88 % read accuracy)
- Read length N50 of 9.1 kb (1D² run) and 11.8 kb (1D run)
- Longest read: 505,912 bp (> 1000 short reads)

References

- [1] Sedlazeck FJ et al. (2018) Piercing the dark matter: Bioinformatics [4] Loman NJ, Quinlan AR (2014) Poretools: A toolkit for analyzing of long-range sequencing and mapping. Nature Reviews Genetics 19:329-346
- [2] Li H (2018) *Minimap2: Pairwise alignment for nucleotide* sequences. Bioinformatics 34:3094–3100
- [3] Coster W de et al. (2018) NanoPack: Visualizing and processing *long-read sequencing data.* Bioinformatics 34:2666–2669
- *nanopore sequence data*. Bioinformatics 30:3399–3401
 - [5] Sedlazeck FJ et al. (2018) Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods 15:461-468
 - [6] Jeffares DC et al. (2017) Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nature Communications 8:14061

Fig. 2: Achieved (cumulative) coverage (A) and called structural variants when requesting at least 5 supporting reads in the population (B).

Affiliations

- ¹ University of Goettingen, Animal Breeding and Genetics Group, Center for Integrated Breeding Research, Albrecht-Thaer-Weg 3, 37075 Goettingen, Germany
- ² University of Goettingen, Microbiology and Animal Hygiene, Burckhardtweg 2, 37077 Göttingen, Germany
- * these authors contributed equally to the work

Corresponding author: Johannes Geibel, johannes.geibel@uni-goettingen.de

