

Autorregressive and random regression models in multiple lactations of Holstein cattle

D.A. Silva¹, J. Carvalheira^{2,3}, P.S. Lopes¹, A.A. Silva¹, H.T. Silva¹, F.F. Silva¹, R. Veroneze¹, G. Thompson^{2,3} and C.N. Costa⁴

¹Universidade Federal de Viçosa, Departamento de Zootecnia, Viçosa-MG, Brazil; ²Research Center in Biodiversity and Genetic Resources (CIBIO-InBio), Univ. of Porto, Vairão, Portugal; ³Institute of Biomedical Sciences Abel Salazar (ICBAS), Univ. of Porto, Porto, Portugal ⁴Embrapa Gado de Leite, 36.038-330 Juiz de Fora, MG, Brazil

Introduction

Material and methods

Data:

✓ First three lactations recorded between 1994 and 2016;

✓ 4,142,740 TD records;

The objective of this study was to compare AR and RR models for multiple lactations test-day (TD) records of milk yield and somatic cell score in Brazilian Holstein cattle.

Results and discussion

Table 1. Variance components and heritabilities with respective standard-errors (SE) for milk yield (MY) and somatic cell score (SCS) estimated by the autoregressive (AR) and random regression (RR) models

Parameters	AR [†]		RR [‡]	
	MY ± SE	SCS ± SE	MY ± SE	SCS ± SE
σ_a^2	8.89 ± 0.268	0.63 ± 0.009	8.27 ± 0.559	0.49 ± 0.015
σ_{a1}^2	_	_	7.28 ± 0.411	0.41 ± 0.010
σ_{a2}^2	_	_	9.13 ± 0.808	0.58 ± 0.024
σ_a^2 σ_{a1}^2 σ_{a2}^2 σ_{a3}^2	_	-	9.60 ± 0.602	0.61 ± 0.023
σ_p^2	≈0.00 ± ≈0.000	≈0.00 ± ≈0.000	-	_
σ_p^2 σ_{t1}^2 σ_{t2}^2 σ_{t3}^2 σ_c^2	18.47 ± 0.270	1.63 ± 0.022	21.35 ± 0.437	1.64 ± 0.022
σ_{t2}^2	22.39 ± 0.392	1.95 ± 0.017	24.41 ± 0.690	1.89 ± 0.020
σ_{t3}^2	29.57 ± 0.928	2.34 ± 0.027	31.59 ± 0.867	2.31 ± 0.025
σ_c^2	3.18 ± 0.101	0.18 ± 0.005	1.56 ± 0.053	0.09 ± 0.001
σ_{c1}^2	_	_	1.68 ± 0.054	0.12 ± 0.002
σ_{c2}^2	_	_	1.47 ± 0.056	0.07 ± 0.001
σ_{c3}^2	_	_	1.41 ± 0.075	0.05 ± 0.002
σ_{c1}^{2} σ_{c2}^{2} σ_{c3}^{2} σ_{e1}^{2} σ_{e2}^{2} σ_{e3}^{2} σ_{e3}^{2} σ_{P1}^{2}	7.88 ± 0.209	1.22 ± 0.018	9.18 ± 0.114	1.39 ± 0.016
σ_{e2}^2	9.60 ± 0.236	1.22 ± 0.029	13.36 ± 0.250	1.45 ± 0.024
σ_{e3}^2	11.09 ± 0.246	1.26 ± 0.023	15.50 ± 0.239	1.50 ± 0.020
σ_{P1}^2	38.42 ± 0.579	3.66 ± 0.030	39.48 ± 0.513	3.56 ± 0.030
σ_{P2}^2	44.05 ± 0.801	3.98 ± 0.029	48.37 ± 0.891	3.99 ± 0.029
σ_{P3}^2	52.73 ± 1.210	4.41 ± 0.027	58.10 ± 1.335	4.47 ± 0.022
h^2	0.21 ± 0.003	0.16 ± 0.002	0.19 ± 0.012	0.13 ± 0.004
h_{1}^{2}	0.23 ± 0.004	0.17 ± 0.003	0.21 ± 0.012	0.11 ± 0.003
	0.20 ± 0.003	0.16 ± 0.003	0.19 ± 0.015	0.14 ± 0.006
$h_2^2 \\ h_3^2$	0.17 ± 0.003	0.14 ± 0.002	0.17 ± 0.008	0.14 ± 0.005

✓ 2,322 herds;

Statistical models:

✓ AR model (using first order autoregressive covariance structure for non-genetic random effects):

 $y = X\beta + Za + Hc + Mp + Qt + e$

 \checkmark RR model (using 4th order Legendre polynomials for fixed and

random regressions):

 $y = X\beta + Za + Hc + Mpe + e$

AR model RR model ✓ Correlations estimates: ✓ Autocorrelations estimates: Short term environment: Genetic: • 0.68 to 0.76 for MY and, • 0.68 to 0.90 for MY and, • 0.82 to 0.85 for SCS. • 0.71 to 0.92 for SCS. Long term environment: Permanent environment:

 σ_a^2 : additive genetic variance (kg² for MY and score units² for SCS); σ_p^2 : long-term environmental variance; σ_{ti}^2 : short-term environmental variance; σ_c^2 : herd-test-day variance; σ_{ei}^2 : residual variance; σ_{Pi}^2 : phenotypic variance; h^2 : Average heritability weighted by the number of records in each sample; h_i^2 : heritabilities; where i=1, 2 and 3 correspond to first, second and third lactations, respectively. §values for σ_p^2 <0.0001 ± < 0.00001. σ_a^2 : Average additive genetic variance weighted by the number of records in each sample (kg² for MY and score units² for SCS); σ_{ai}^2 : additive genetic variance; σ_{ti}^2 : permanent environmental variance; σ_c^2 : Average herd-test-day variance weighted by the number of records in each sample; σ_{ci}^2 : herd-test-day variance; h^2 : Average heritability weighted by the number of records in each sample; h_i^2 : heritabilities; σ_{ei}^2 : residual variance; σ_{Pi}^2 : phenotypic variance; where *i*=1, 2 and 3 correspond to first, second and third lactations, respectively.

≈0.00 for MY and SCS.

✓ Annual genetic gains: Bulls:

- 46.11 kg for MY and,
- -0.019 score for SCS. \bullet

Cows:

- 49.50 kg for MY and, \bullet
- -0.025 score for SCS. \bullet

• 0.10 to 0.76 for SCS.

✓ Annual genetic gains: Bulls:

- 47.70 kg for MY and,
- -0.022 score for SCS.

Cows:

- 55.56 kg for MY and,
- -0.028 score for SCS.

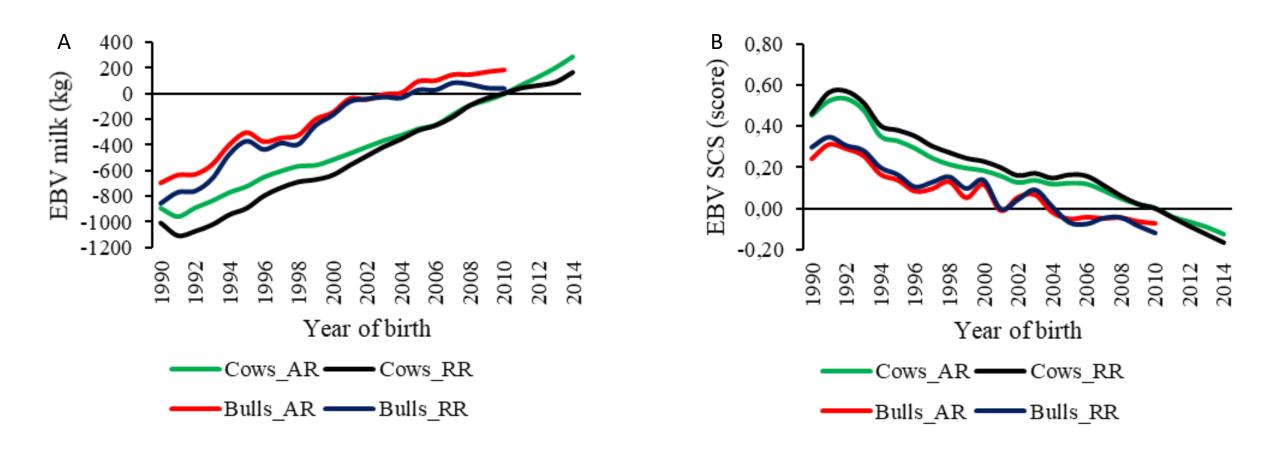


Figure 1. Genetic trends for milk yield (A) and somatic cell score (SCS - B) for bulls and cows born between 1990 and 2014 from evaluations using autoregressive (AR) and random regression (RR) models (base year = 2010).

Conclusion

Both models performed well and may be used for genetic evaluations of

production traits of the Brazilian Holstein cattle. Given the lower number

of parameters to estimate the AR model is more parsimonious and

would be a reasonable choice to be used in genetic evaluations.

Acknowledgments

The authors acknowledge Brazilian Holstein Cattle Breeders Association (ABCBRH) for providing data for this study. This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and Portuguese National Funding Agency for Science, Research and Technology (CAPES/FCT, nº 99999.008462/2014-03 and 88887.125450/2016-00), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 465377/2014-9 - PROGRAMA INCT).

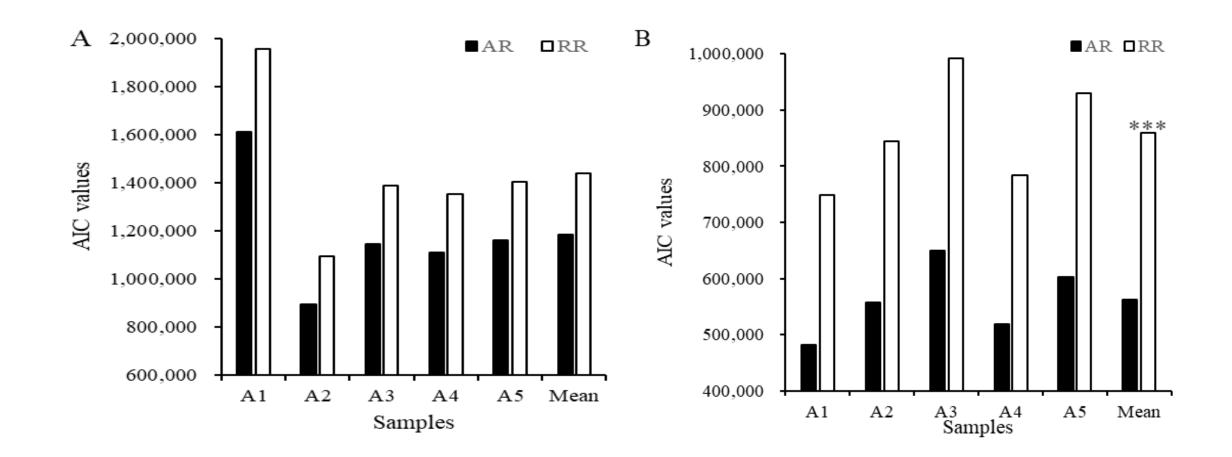


Figure 2. Akaike information criterion (AIC) values from five samples (A1-A5) used in the estimation of

the variance components by the autoregressive (AR) and random regression (RR) models.

