

HOCHSCHULE OSNABRÜCK UNIVERSITY OF APPLIED SCIENCES

Impact of a litter amendment on welfare indicators and litter quality in a turkey husbandry K. Toppel¹, H. Schoen¹, F. Kaufmann¹, M. Gauly² and R. Andersson¹

Background and Objective

- Welfare issue: foot pad health
- \rightarrow <u>Need</u> for management measures \rightarrow litter quality
 - ,Poultry Litter Treatment' standard procedure in **US poultry production**
 - Reduction of ammonia emissions and incidence of pododermatitis
- \succ Evaluation of the effect of litter treatment \rightarrow safety and effect on foot pad health

Conclusions

- **SBS** *litter treatment: reduces pH-value; <u>pH-value</u> seems* to be a feasible management measure on-farm
 - To reduce foot pad lesions under European turkey husbandry conditions without negative *impact on health parameters*

> Further investigations have to determine:

- Effect under field conditions
- Impact on ammonia emissions

Animals, Material and Methods

Data collection

> Turkey research farm

1. day

- Pre-study (**S1**; 124 days)
- Main study (S2; 147 days)
- 2 groups per study/ each repeated once/ study
- ➤ Each study 142 birds/group (♂, B.U.T.6)
 - Litter treatment (**TRT**) | no treatment (**Con**)
- Litter: wood shavings (rearing; 3.4 kg/m²); chopped straw on top
- Litter treatment: Sodium bisulfate (SBS; Grillo Werke AG Duisburg)
 - 4g SBS / 100g bedding material; dispersed on top:
 - < 24 h before housing 1-day old poults</p>
 - day 15, 22 and every 3rd litter dispersing date ($\sum 20$ TRT)

Monitoring and evaluation of foot pad health (FPD)

- > S1: 220 feet / group post mortem (p.m.)
- S2: weekly (rearing) / biweekly (grow-out)
 - 60 birds/group and 230 feet/group *p.m.*
 - Macroscopic Score 0-4 (Hocking et al. 2008)
 - Worst scored foot of an individual was evaluated
 - Mann-Whitney U-test; α =0.05

Monitoring of litter samples (only S2)

- \succ Biweekly (drinker line, feeder area, activity area)
 - pH-value (calibrated for 4.00, 7.00, 9.00; VDLUFA 2000)
 - Dry matter content (DM; weight loss after drying 24h 105°C; VDLUFA 2014)

Results and Discussion

Liveweight (n=60 birds/group; Mean and SD; day post hatch)

V	36. day	124./147. day

Liveweight

> No influence on live weight

S1-TRT	69.6 ± 5.8	1,393 ± 150.0	16,901 ± 775.5			
S1-Con	72.1 ± 9.5	1,438 ± 177.8	16,850 ± 1,139.3			
S2-TRT	69.6 ± 5.9	1,424 ± 155.8 ^a	19,523 ± 1,556.6			
S2-Con	68.5 ± 6.5	1,347 ± 138.6 ^b	19,554 ± 1,417.0			
^{a,b} mean within a column and study differ significantly at $p \le 0.05$; t-test						

(cf. Broiler studies Toppel et al. 2018; Tasistro et al. 2007; Li et al. 2013)

Mortality

 \succ Cumulative 1.-124./147. day \succ No influence on mortality S1 TRT / Con : 8.0 vs. 11.6 % S2 TRT / Con : 12.7 vs. 12.0 %

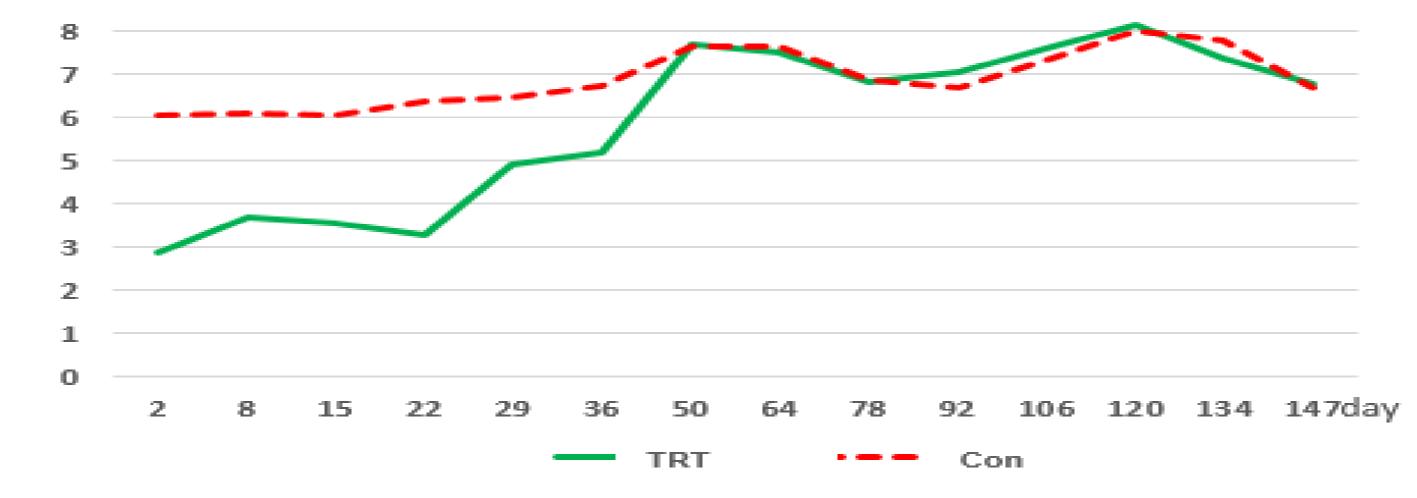
 \rightarrow national Ø 10.3-11.0% male mortality in turkey livestock (Damme 2017; Toppel et al. 2017)

Foot pad health

 \geq Significant less severe lesions and prevention of lesions in treated groups \rightarrow results in accordance with broiler studies (cf. Toppel et al. 2018)

Foot pad health p.m. (% affected feet; no lesions = score 0, moderate lesions = score 1+2, severe lesions = score 3+4)

	S1-TRT			S1-Con p		S2-TRT			S2-Con			p		
n/ group	no lesions	moder ate	severe	no lesions	moderate	severe		no lesions	moderate	severe	no lesions	moderate	severe	
220/230	10.0	83.2	6.8	4.1	84.5	11.4	0.001	5.2	74.0	20.9	0.0	62.6	37.4	0.000


means per study differ at significance level $\alpha \leq 0.05$; Mann-Whitney U-test

Litter quality

pН 9

- > Decrease of <u>dry matter content</u> similar between groups, despite hygroscopic treatment (Li et al. 2013)
 - 36. day TRT / Con 67.9 vs. 66.9 %
 - 147. day TRT / Con 42.8 vs. 41.2 %
- > Initial pH-value 2.8 (TRT) vs. 6.7 (Con) | day 36 pH 5.2 (TRT) vs. 6.8 (Con)
 - Main FPD impact (,group'-effect; p=0.000)
 - Reduction of microbial activity ? (Tasistro et al. 2007)
 - Reduction of a_w -value \rightarrow less "free" water? (Dunlop et al. 2016)

pH-value progress (avg. <u>Control and Treatment</u>)

(pooled samples per group from drinker line, feeder area and activity area)

Damme, K. (2017): Poultry Business studies. Faustzahlen der Landwirtschaft. In: K. Damme, F. Muth and A. Mayer (ed.): Geflügeljahrbuch 2018. Schwerpunkt Deutschland im internationalen Vergleich. Stuttgart: Eugen Ulmer, 84. Dunlop. M.W., Moss, A.F., Groves, P.J., Wilkinson, S.J., Stuetz, R.M. and Selle, P.H. (2016): The multidimensional causal factors of 'wet litter' in chicken-meat production. Sci. of the total Environm. 562:766-776. Li, H., Lin, C., Collier, S., Brown, W. and White-Hansen, S. (2013): Assessment of frequent litter amendment application on ammonia emission from broiler operations. J. of Air & Waste Management Assoc. 63:442-452. Tasistro, A.S., C.W. Ritz, and D.E. Kissel. 2007. Ammonia emissions from broiler litter: response to bedding materials and acidifiers. Br. Poultry Sci. 48:399-405. Toppel, K., Kaufmann, F., Schön, H., Gauly, M., Andersson, R. (2017): Development of mortality and foot pad health in turkey flocks and its implication for welfare assessment. Berl Münch Tierärztl Wochenschr 130 (5/6) 258-265. DOI 10.2376/0005-9366-16044. Toppel, K., Kaufmann, F., Schön, H., Gauly, M., Andersson, R. (2018): Effects of pH-lowering litter amendment on animalbased welfare indicators and litter quality in a European commercial broiler husbandry. Poultry Science 0:1-9. DOI: org/10.3382/ps/pey489.